EENGR 406 - Course Project

Using ON Semiconductor's C5 CMOS process

- 1. Design an op-amp that can operate with a VDD between 2 and 5 V while driving a 10 pF (max) and $1k\Omega$ (min) load.
- 2. Other requirements are:
 - DC open-loop gain > 60 dB under all load and VDD conditions
 - Gain-bandwidth product should be > 100 MHz
 - Slew-rate with maximum load > 100V/microsecond
- 3. You will need to write a report (IEEE journal format) containing, at least, the following:
 - Simulations showing large- and small-signal operation, along with limitations, using +1 gain non-inverting and -1 gain inverting op-amp topologies
 - Show operation, including settling time and slewing, with no load and varying loads
 - Your detailed design considerations
 - Show schematics with a comparison between hand calculations and simulations along with comments
 - A table summarizing results such as input CMR as a function of VDD, unity-gain frequency, power, slew-rate, CMRR, PSRR, output swing as a function of VDD, etc.
- 4. You will be required to give a 10 minutes presentation of your work.

NOTE:

- Process information can be found at MOSIS.com, or at ON Semiconductor's website (http://www.onsemi.com/)
- SPICE models are in /usr/class/C5_models.mod