PN Junction and MOS structure
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Fig. 1.6 A cross section of a typical n<hannel transistor.



Basic electrostatic equations

* We will use simple one-dimensional electrostatic
equations to develop insight and basic understanding of
how semiconductor devices operate

— (Gauss's Law
— Potential Equation

It puts together Gauss's Law
— Poisson's Equation «—— and the potential equation



Gauss'’s Law

E = electric field [V/m
icfield [Vim] —— __—charge density [C/m]
E_p*
S T permittivity [F/m]

charge per area in the
interval from x_ to x [C/m’]

/

deE(x)|=€¢,E(X X)dx=Q( X
x{ [eE(x)]=¢,E(x) Xfp X=Qs(X)

The possibility of a change in permittivity due to
a material interface has been accounted for by
keeping the permittivity together with the field



Potential Equation

/reference point

b (X)—d(xg)=] —E(x)dx




Poisson’s Equation

* [tdirectly links the potential with the charge distribution
(there Is no need to go through the field)

(dE_p
dx e » dqu(x):_dE(x)__g
< E( )__d_(l) dX2 dx €
X dx




Boundary Conditions

Electronic devices are made of layers of different
materials

We need conditions for ® and E at the boundary
between two materials



Potential at a boundary

An abrupt jump of @ (“along x”) would lead to an infinite
electric field at the boundary dD
X

E(X)=—d—

Infinite electric fields are not possible (they would tear
the material apart)

Therefore ®(x) must be continuous:

Where the boundary
$ (07 )= (07) _— islocatedatx=0




Electric Field at a boundary

* The electric field usually jumps at a boundary

+A4 +A
| d[eE(X)]=6,E(x=+A)—¢, E(x=—A)= [ p(x)dx
* Byletting A—0: 4
f p(x)dx=0
/ -
e,E(x=0")—¢,E(x=0")=0 ~_N\ There can be a sheet of charge
LA [ at the boundary
[ p(x)dx=a;
/_A A sheet of charge is an Infinite
e,E(x=0")—¢, E(x=0")=Q, amount of charge all distributed

on the boundary surface
(that is a Dirac function)



Boundary between materials
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» Figure 3.4 (a) Boundary between materials 1and 2 with permittivities £, > £, and
(b) resulting jump in the electric field. (c) Boundary, with a surface charge Q located
at the interface and (d) resulting jump in the electric field.



Boundary conditions

_ continuity of potential
¢(X=O+)=¢(X=O ) at a boundary
+A
| p(x)dx=0
—A \
E(x=0+)=ﬂ E(x=0) electric field jump for
€, charge free boundary
+A
f p(x)dx=Q;
—A
\ E(X—O+)—3 E(X—O_)—I-% electric field jump for
— - €, — €, charged boundary




Oxide-Silicon interface

*  Example of very common interface in microelectronic devices

Source Gate Drain Source Gate Drain
Polysilicon

? s, Cf Permittivity of vacuum
T NN NN T l
)

ENRES 117

Y bulk Si n bulk Si

€,=3.9-¢,
- -12
i 4 €,=8.85x10 [ F/m]
(a) (b)
IERE nMvos transistor (a) and pMOS transistor (b)
€ Ew(0)




Metal — Metal Capacitor

In many IC
processes
there are

two or more
levels of metal
separated by
silicon oxide

f metal |
J (clear field)
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» Figure Ex3.1A Metal-metal IC capacitor: a) layout and (b) cro
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Metal — Metal Capacitor
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» Figure Ex3.1B Close-up of metal-metal capacitor with applied voltage, showing
surface charges on top and bottom metal plates and electric field lines.



Metal — Metal Capacitor

p=0
Since there Is no charge present in the oxide dE _ p/
— the electric field in the oxide Is constant dx €
Ly
Since the electric field in the oxide Is 'qb(td)_(/)(o): —E,, dx
constant and the voltage drop across < 0
the gap sV \V =¢(0)—o(t)
. V
— it follows that: EOX=E
_ Emetal & M_& _ d QS _ on
B o= €, E/eta' " €, - t, B € oy - 23_ dv t,
No electric field inside metals

Capacitance per unit area [F/m?]



Example

Find potential, electric field and charge distribution for a
metal-metal capacitor with t, =1 ym and an applied

voltage of 1V

Figure Ex3.1C Potential, electric field, and narge density for the capacitor with
L,=1um




M-O-S Capacitor
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» Figure Ex3.3A Metal-oxide-silicon capacitor: (a) layout and (b) cross section.



M-O-S charge distribution

// / ///
7 //// 7/ Sheet charge
/7/, ' Q.. (Clem?)
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Charge distribution and electric field
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M-O-S charge density profile

(,_)(;(‘}(.l +4 ’.»\’A APp(x)

Po




M-QO-S Electric Field

A E(x)

The electric field is NOTE:
confined in the region _ the total excess
_t <x<X E,, charge in the region
” ‘ I ~t <X <X, is zero
E(0Y)
-I " | - '\' ’ ’\

* Inthe metal the electric field I1s 0

« Inthe oxide (-t _<x<0) the charge density is zero (p(x)=0),

therefore the electric field is constant
0

for—t,, <x<0: dE(X)=Q®6=O —> E(x)=E_

dx € ox




M-O-S Electric Field

A E(x)
NOTE:
—l P The electric field
jumps only at the
Interface between

P two different materials

- — + — er— e

” X, ‘
M O | S
1

Outside the charged region of the silicon (x > X ) the electric field is 0

In the charged region of the silicon (0 <x < X,) the charge density Is
constant (p,) therefore the electric field is a linear function of x
0 X,
(=LK — ¢8(x) -6 E0)=pf o = £(07)= L%

ES 0" ES




M-O-S Electric Field

A E(x)

M 0 | S
|

*  The boundary condition at the oxide/silicon interface is:

€ —po Xy

EOX E0X=€SE<O+)_>EOX=(QE(O+) m EOX=

EOX

] (\m




Potential plot through M-O-S

POtinBEiltlsr;gg:p&ﬁ;gggﬁggg s A O(x) potential at the metal gate:
X = 0 oxide/silicon boundary / b (b ox

surface potential : . =¢p (0)

substrate potential : ¢, =p (X 4)

2 . f+
X, ‘lln X
M

_ : drop across the oxide
Poisson' s Equation: /

2

d"p(x) _—p(x) V=¢,— b=V +Vsg
2
dx € \drop across the charged

region of the silicon



Surface potential

A E(x)

for—t, <x<0:

—t,, E.
b= Ps= f (_on) dX=Eq t,=V, Tm,-’
0
e | X, E
X IS negative in
the region
considered

Linear

The drop across the oxide is proportional to the
charge stored on each side of the oxide



Potential drop across the substrate

for 0<x<X .® « charged region of silicon
.

The potential is “concave up”

¢ =" inthe charged region

dz(l)(x):_po (>O)

2
dx €,

I\ | Quadratic
‘A‘I‘ |
( | ¢, /
e e
7o [LO..,,,, i




PN Junction in Thermal Equilibrium

* |f no external stimulus Is applied (zero applied voltage, no
external light source, etc) the device will eventually reach a
steady state status of thermal equilibrium

* Inthis state (“open circuit” and steady state condition) the
current density must be zero:

‘J tot,0=“.l p,0_|_‘]n,0=O

*  Eventually, the populations of electrons and holes are each in
equilibrium and therefore must have zero current densities

J,o=0
J, =0



Diffusion Mechanism

Electric
field

The charge on the two sides of the
junction must be equal (charge neutrality)

++ +
S
——|+++

n

p+
_:+3\
— =+ + +

Under “open circuit” and steady state
conditions the built in electric field
opposes the diffusion of free carriers
until there is no net charge movement

2 R/‘_/
Immobile

negative Depletion
charge region
N, >N_

\\ Fig. 1.2 A simplified model of a diode.

Immobile

Note that a depletion region exists at the

positive  junction due to diffusion and extends far-
charge ther into the more lightly doped side.

We assumed the n-side is the more lightly doped



Diffusion Current

It's a manifestation of thermal random motion of particles

(statistical phenomenon)

In a material where the concentration of particles is uniform the
random motion balances out and no net movement result (drunk
sail-man walk — Brownian walks)

If there Is a difference (gradient) in concentration

parts of a material, statistica
crossing from the side of hig

ly there will be more

hetween two
narticles

her concentration to t

lower concentration than in t
Then we expect a net flux of

ne reverse direction.
particles

ne side of



Semiconductor Material

Diffusion Equations .. —
> .

charge in the cross section ~—

Nonuniform Concentration

dn The more non uniform the
Inockq dx —— concentration the larger
the current

] Proportionality Constants
Mn dn

_ an _ an — an_ an
1= @Aqedx_D“Aqu Ip_/‘ gy = Pr A0 g

Assuming the charge concentration decreases with increasing X
It means that dn/dx and dp/dx are negative, so to conform with
conventions we must put a — sign in front of the equations.

_p o
J”_D”qu

_ dp
‘]p _qud_x




Drift Curren

~
T
>
\/
<<
Il
|
my Iy

Mobility (proportionality constant)

t

Eventually v saturates

* too many collisions

* effective electrons'
mass Increases

In=VnVV h qe IP=VPWhpqh
\_Y_/'
/ charge per unit of volume

volume travelled per unit of time

_UnEnqe=UnE ng

J,=
‘] p=“pE pqh=upE pq




Drift and Diffusion currents

Drift Current Diffusion Current

E
—»

AN -

_ dn dn
J n,drift —  Mn Enqe Hn Enq ) n.diff = -D qedX andX
J . ain=HM,E u, E d d
p,drift— Mp pqh p pq delﬁ_ D qhdp_ D qd)l:()

q=9,=—(,= 1.6x10°YC



Electric
field

Built in Voltage =i
p* 3: 2 pi i n
) TR
_ 7/ =il
* Atequilibrium: R
(drift and diffusion balance out)
dn X X,
Jo=Jd it dn g =H,ENA+D, qu p
dp _
‘Jp ‘derlft+‘]pd|ff H qu quX =0
o

Let's consider the second equation:

_ v dp
Ho Ep;z( P % Hoax P~ DIOdx
V(x,) p(X)
p p D
i [ av=p, TR vk (x)= 2
Vix,) p(x,) P Hp

—1In

p(X,)

p(x,)

= —H, pdV=Dpdp —




(10") n p (10")
Majority X X Majority
Carriers M —; L Carriers
(10%) : (10°)
Minority s ~__ Minority
Carriers : Carriers
n, : Concentration of electrons ~ N (e.g. 1017)
on n side
p,: Concentration of holess ~ ~NnZ/N g
on n side
P, : Concentration of holes ~N, (e.g. 1018)
on p side
n, : Concentration of electrons ~ nf/ N ,
on p side
X
o=V (X,)=V(X,)=—=In P(X,) & ¢0=ﬁ|n
Hy, | P(X,) g

Built in Voltage

Since both p and D are
manifestations of thermal
random motion (i.e.
statistical thermodynamics
phenomena) they are not
independent

Einstein' s Relation:
D, D, KT
Hy M,

Vi

Mass — Action Law ;
n-p=n’

Ifn1thenp |

A larger number of
electrons causes

the recombination
rate of electrons with
holes to increase

NANp

n’




Applying KVL to the
PN junction in equilibrium

0 : :
| ==— We cannot have current. Something is wrong !

p X, X N
®9
000 |
N

R




Built in Voltage

KVL at equilibrium:

\'+¢ g

Metal-semiconductor
contact potentials

If a free electron in the P region or a hole in the N region somehow reach the
edge of the depletion region get swept by the electric field (— drift)



Neutrality of charge

There are 4 charged particles in silicon, two mobiles (holes and
electrons) and two fixed (ionized donors and ionized acceptors)

The total positive change density and the total negative charge
must be equal

N,+p=N +n electrons

/ \ concentration
positive ions negative ions

: concentration
concentration

holes
concentration



Depletion region in equilibrium

p(x)=q(p—n+Ny—N,)
l
the depletion regionis free of
electronsand holes
l
Np—N,>n-p
l
p(x)~q(Np—N,)
l
*xonthe Pside N ,=0:
p(X)=—0N,
*xonthe N side N ,=0:

p(x)=qN,

/\f\ E(x) _p(x)
dx €,

E(0)=E__=-gN

The doping concentrations N, on the p side and N_ on the n side
are assumed constants

Positive and negative excess
charge in the depletion region
must balance out (neutrality of
charge):

qNDxn:qNAxp

Gauss' Law:

Axp/.sS:—qNDxnlsS



Depletion region in equilibrium

E
N (x) .
p ;N > X
X _Na X
| S
NpX,=N, X, ——|< N,
Emax-—qN x/e =N X [ X =—X
L7PTN,
Aq)(x)
A #X
|E | x _LaNoX; AreaTriangle OE,_ X,
£ 1 PR i
R y max| Xn = 2 €, 9 max “*n
N
| —|Emax| X, %qE—A<:>AreaTr|angIe0Emax X,
Potential Equation: " _19N, x2+£ gN, 2
0
dp=—E(x)dx 2 € 2 e °




Depletion region in equilibrium

~ N
X=X
< Np A Np
N, — Xdep=xn+xp=(1+N—)xp=(1+N—)xn
X =—X D A
. P NA n l
Np N
X, = and x,=X
PRI N LN "UEINL+HN
2 2
19qNy, , 19gN, , 1agNy ., N, 1N, - Np
=_ X, += X, == X += X =
Po 2 e, " 2 € P 2 € TUINMHNG 2 e T*INL+N,
2 2
1 0 Xdep 2 2 quep |\IAND
== N, -N24+N,-N2)=
2 \N,+N, (No-Nu+N o Np) 2¢. N,+Ng

|



Width and max field of the
depletion region in equilibrium

: N, N
Xdep=\/2€s NA+I°\ID¢0 with (bo:ﬁln A2 D
g NN, g n;
N N N N, N
|Emax|=q AXD=h dep : =q v Xdep
€, €, N,+Ny e N,+Np
l




Biased PN Junction

N
V+<l>pm+<l>mn+Vj=0
“ ~ J
~_ 7 S _(150
//_\_\
Vj=cl)0—V
 E(X)




Biased PN Junction

_ KT, [NANp
b= q In niz /
iA
2e, N ,+N
dep=\/ q NA N D(qbo_v)
A D BV
i >V
_12g N,Np [ "
|Emax|_\/€S NA+ND(¢O V)

If we keep decreasing the voltage eventually we'll break the material.
For silicon the breakdown point is reached for an electric field of approx. 107 V/m.
NOTE: the depletion region can't get bigger than the length of the bar !

if we keep increasing the voltage the depletion region will disappear (v=®).
As v becomes comparable with @ the PN junction behave like a sort of resistor (the
current is determined by the ohmic contacts and the resistance of the semiconductor)



Reverse Biased PN Junction
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* Under reverse bias the depletion

region becomes wider

1

Then, It gets harder for the
majority carriers to cross (diffuse
through) the junction and easier
for the minority carrier to be
swept (drifted) across the junction

1

Since there are only a FEW
minority carriers, the current
carried under reverse bias is
negligible



Reverse Biased PN Junction
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NOTE:

As soon as a minority carrier, let's say an
electron on the P side, is swept across
the junction, on the N side it becomes a
majority carrier. Every time a minority
carrier on the P side is swept toward the
N side it leaves one less minority carrier
on the edge of the depletion region in the
P region. The same is true for holes
swept from the N side to the P side.

Under reverse bias the minority carrier
concentration at the edges of the
depletion regions is depleted below their
equilibrium value. Since the number of
minority carriers is small anyway this
won't be a major difference




Forward Biased PN Junction

* Under forward bias the depletion

region shrinks

1

Then, It gets easier for the
majority carriers to cross (diffuse
through) the junction and harder
for the minority carrier to be
swept (drifted) across the
junction.

Since there are a LOT of majority
carriers we expect the current to
be considerable



Forward Biased PN Junction

n p
i OO HO IS i i g
== S HBIOICHE o
S eaeet
R CCHS SR

NOTE:

As soon as a majority carrier (let's
say a hole on the P side) crosses the
junction it becomes a minority carrier.
Thus at the edge of the N side of the
depletion region we have an excess
of minority carriers compared with
the concentration of minority carriers
on the rest of the N region far from
the junction. This gradient causes a
considerable diffusion current. The
same is true for electrons crossing
from the N side to the P side.

As VF is increased the excess minority concentration is increased
If VF = 0 (equilibrium) there is no excess minority concentration




|/V characteristic of PN Junction

_|gAD, n;

I diode — L

2 V diode
+qADpni 5

N, L, N

n

Y

S

with :
A=cross section area of the diode
2
N'—= holes' concentration in the N region (minority carriers)
D
n’
N'—=e|ectrons' concentration in the P region (minority carriers)

A
D, =diffusion constant for the holes in the N region

L ,=diffusion lenght for the holes in the N region=y D
T ,=average time it takes for a hole into the N region to recombine
with a majority electron



|/V characteristic of PN Junction

Since the only region where we have “net charge” is between X and x_

such region (a.k.a. space charge region) is the only one where there is
electric field.

s,
L
-—
)
g
o B .
o & iz
v $Ze
“ £ 27
% g7
4
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%
3
,}’?’
4 'g:ﬂ;
ﬁ £ 2 »
- >
i B K
Ja— ™
s
W

The regions from A to X, and from x_to K are quasi-neutral (it is like they

were perfect conductors and in perfect conductors there is no electric
field inside)



|/V characteristic of PN Junction
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The situation is similar to the one at equilibrium but now the “built in
. Instead of @,

voltage™ is &, -V

d

diode <

P,

np_u-l-h—“'

l..
L
L 4

»|
I“‘

-
“
. **
L3R
+*
-

gnd

>

—+
A



|/V characteristic of PN Junction
Under forward bias close to the depletion edges we

have:

— agreater hole concentration than normal on the N side

(minority carriers)

— agreater electrons con

side (minority carriers)

centration than normal on the P

73 (*») g, (3)

In the P region we have a lot of holes

In the N region we have a lot of electrons

(%) l 2
z ' Mo (-%p) LN e =f,
s\ : A
7 | C
p = : . N
-X 0 "
p P | N

that will diffuse toward the N region

that will diffuse toward the P region



|/V characteristic of PN Junction

across the space charge region (between X, and X ) as:

~

- b0V dgiode —In p(_xp)
< VT p<Xn)

ﬁbo_Vdiode:In n(x,)
. V; n(—x,)

p(— p> _ n<Xn)
px,) |~ T nx,)
o(x )= p(;v><dlze>= p<—¢:p)
o Vv, eVT
n(x,

Extending the result derived at equilibrium we can write the voltage

diode



|/V characteristic of PN Junction

And noting that:

— at the boundary of the quasi neutral P region at -Xp the hole density

(majority carriers) is approximately equal at equilibrium as well as
under bias,

— and the same is true for the electron density (majority carriers) at the
boundary of the quasi neutral N region (at Xn)

2
il q:p) ~ piﬁ’ = pno=|::—' the concentration of the majority
eVr Ve ° | carriers in the quasi neutral regions
n(x) n, n? Is approximately the same as the
s =np°=N_A concentration at equilibrium
aVr aVr



|/V characteristic of PN Junction

Thus:
Vdiode /-
4 p(_xp>_ p<_xp) V; ni2 V\;d
p(xn) Po—V giog - $o € p(Xn)N_e T
VT iode V_T ND
e € y > < n_g V giog
n<Xn) n<Xn) \;Td n(—X )N_Ie o
n<_Xp> (IDO—Vdiode ﬁ e \ P NA
\_ e Vi eVT A
p(_xp>N ppO n_I2
& ﬂ_ pnO N 5
e'm e
n<Xn) r]nO N n_I2
b b TN,
e'n e




|/V characteristic of PN Junction

Idiode= I n+ I p= I n,drift_l_ I n,diff_l_ I p,drift_l_ I p,diff

If we consider the quasi neutral regions, since in the quasi neutral regions
there is no field there will be no drift

U

l.~1, 4 (neutral regionW )
|~ 4« (neutral regionW,)

X

Then, the most suitable traverse sections for the evaluation of the total

current |, are those at the boundary of the depletion layer (x=-x_or x=x )

| diode = In(_Xp)+ | p(_xp)N | it (_Xp)+ | p,diff(_xp)



|/V characteristic of PN Junction

e If we make the simplifying assumption that the flow of the carriers in the
depletion region is approximately constant (in other words we assume the
recombination in the depletion region is negligible)

Iy i (_Xp)"“ I it (X,)
| iode ™ | 1 gifr <_Xp)+| 0., diff <_Xp>N | it (_Xp>+ | o, diff (X,)

e The currents due to diffusing carriers moving away from the junction are given
by the well know diffusion equations:

dn_(x)
| g (X)=QAD, C;)X
dp, (X)
| p ,diff (X)=_q AD

Pdx



|/V characteristic of PN Junction

* |f we assume that the carriers distribution is linear (SHORT DIODE)

P N
) ' &P
Y S
7po 1 i
' ' — , {
{e We > < Wh 9}
& —Xp O Xn K ilee
.
'473“‘}—
Vdiode Vdd
v, vV,
dnp(x)| _np(—xp)—np(A)=npOe —np0=npo(e —-1)
dx  [—X, W, W, W,
Vdiod Vdiode
vV, V.
dpn(x) | . pn<Xn>_pn< )= . Pno€ pnO_ . pn0<e —1
W W




PN Junction: I/V characteristic

n,=—— (electrons are minority carriers in P)
*  Recalling that: A

Po=——  (holes are minority carriers in N)

N Vdiode
dnp(_xp)=npo(e . _1>= n|2 (e Vv, _1)
dx W, N ,
Vdiode
dpy(x) _ _ Ple " —1)_—nf S,
" \%
dnp<_xp) 2 Dn V\;iide
In,diﬁ<_xp)=qADn dx =qAD; N W (e 7 —1)
AT D
V.
Pa(Xs) D, ~F
|y ai (X,)=—QAD, =q AN —"—(e " —1)



PN Junction: I/V characteristic

e And finally: D, et

y | airs (— X ) qAnIN W (eVT —1)

D Vdid
on (%)=9 AT (e 1)

Vdid
IdiodeNIn.diff(_Xp>+|p,diff<_Xp)=qAn N W +NpW )( T —1)
N
Y |

* Inthe case of a LONG DIODE the minority carriers will
recombine before reaching the diode terminals

n D v,
| Gioge ™ | n.diff(_xp>+| 0., diff <_Xp>=qAni2 + )(e o —1)
p



PN Junction: I/V characteristic

D D =
- 2 n V.
| ioge ™ | n.diﬁ(_xp)+| 0., diff (_Xp)_qAni ( N W T N D\;)Vn (e "7 —1)
A\ /
Y |
D

2
| ioge ™~ | n.diff(_xp)+| 0. diff <_Xp)=q An;

&

p
N,L  NpL
Y

Where L _is a constant known as the diffusion length of electrons in
the P side and L | is a constant known as the diffusion length for
holes in the N side. The constants L and L are dependent on the
doping concentrations N, and N_ respectively.




Diode Capacitances

Depletion Capacitance (= Junction Capacitance) —— C;
Diffusion Capacitance — C,

Reverse Biased Diode
— Depletion Capacitance
Forward Biased Diode
— Diffusion Capacitance + Depletion Capacitance



Depletion Charge

The depletion region stores an immobile charge of equal amount
on each side of the junction (— it forms a capacitance !!)

d; = 9p=—0qN,Xx,A = —qy=—0qNx A N side has “+” ions
_ No N ,
X =X and x,=X
P side has “ & " ions \ PTRIN L+ N "IN LN,
N,N, The decision to take g, negative is
4, =—( ( N ,+N D) A X dep totally arbitrary. (But it turns out to

be a good one if we prefer to work
with positive capacitances)

The charge of the depletion

g, (VD)=_A\/2q SN AN (CIDO—VD) «—— region is a function of the
A D voltage v, applied to the diode




Depletion Capacitance

Since the deplet

lon charge does not change linearly with the applied

voltage the resulting capacitor is non linear !!

A

9,

N,
°N,

qJ(VD)=_A\/2qE (<i>o—V |

An important physical consideration:
we are dealing with a capacitor that no matter where | put the + of the
applied voltage it always accumulate the positive charge on the N

side of the juncti
junction.

on, and the negative charge on the P side of the



Small Signal Depletion Capacitance

*  For small changes of the applied voltage about a specified DC
voltage V_ we can derive an equivalent linear capacitor

approximation

since q,Vs. v relationship is
s non linear the capacitor is non

V. vEV, % v, linear g, oc+/(—vy)

e / a, (v, =S N vV
I _ Q/Slope

small “quantities’

_ total “quantities”
Common conventions:  (applied)

DC “quantities”




Small Signal Depletion Capacitance

1/2

dq, d N, Ny
C;=CiVp)J= ||, = 5= (2q € (o= Vo) =
. PP dvy 'V, dvg N,+N, 7% P v,
1/2
_ NaNp SISV I7] B
A(quSNAJrND dvg \Po Vo) )v =
D
_ NA'ND v 1 ~1/2 _
= A(quSNA+ND 2(q§O V) VD_
1/2 ~1/2
_Al96 NaNp RV T 2 NA+Np B _
=Al T Nans| @Vo) )— A 1o NS (bo=V )| =
A

\/2N+N \/2N+N
ge. NN quy



Small Signal Depletion Capacitance

Zero Bias Capacitance = A Ae
junction capacitance in —|C jo=C J. (V,=0)= — >
thermal equilibrium (V_=0) \/ 2 N,+N, X dep.0
b
q €s N A N D

/\J

2¢, N,+Np \/2 N,+Np
X gep 0= b= b
p.0 \/ g NuNp ™° © ge; Na-Np °




Small Signal Depletion Capacitance:
Physical Interpretation

Capacitance of a parallel plate capacitor with its plates separated by
the depletion width X dep(VD) at the particular DC voltage V..

The charges separated by X dep ATE the small signal charge layers *q,

For vd — 0, the small signal charges become sheets that are
separated by a gap width of exactly Xdep



Physical Interpretation

A PLx)
+qf\/d
a) p-side —x, n-side
——
VD - VD X )
Y A _qNa
Q_[ — _qh"r‘),
AP
+q,’\r’d
i p-side —x,, —‘ti’ n-side
X, X5
T DLt o .
x < x_ lg,l=<\|C S————
» . 7 7 Gy = —CIJ\’J’([‘,
q; = gV Ax,, A Ap(x) = p(x) — pi(x)
— + iV,
4+, ——»] o
) p-side X & n-side
X X, _
—-‘_" —.‘-p . )
HG=9;— ;>0 - — gV, e
s \ =
S e i - —a; = —aN ax,
= g/N_ Ax,

>» Figure 3.19 (a) Charge density p(x) in depletion region for a reverse bias of
V5 <0, (b) charge density p’(x) in depletion region for a perturbed reverse bias

vp = Vo + vy with v,> 0, and (c) difference Ap(x) between (b) and (a) showing
incremental depletion charge *q; separated by approximately the depletion width
X4 Note that the magnitude of v, is exaggerated in order to clarify its effect on the

depletion region width.



Small Signal Depletion Capacitance

* Inthe practice the depletion capacitance is usually provided per

Cross-section area:
€, 1

C. =(D<V =0)E =
a P Xdep,O \/ 2 NA+ND
qes |\IA'ND ’

dg €, €, C.

Cj:Cj(VD)EdV—J vV oX_ = L
D D dep VD VD
Xdep,O\/(l__) \/(1__)
$o $o

NOTE: when the diode is forward biased with vj, =
the equation for C,“blows up™ (i.e., is equal to infinity).

As v, approaches s+, the assumption that the depletion
region is free of charged carriers is no longer true.

Figure 2.2-3 Depletion capacitance as a function of externally

applied junction voltage.



Graded Junctions

* Allthe equations derived for the depletion capacitance are based on
the assumption that the doping concentration change abruptly at the

junction. Although this is a good approximation for many integrated
circuits is not always true.

*  More in general:

Ci 4

v\ e
1——P

$o

C.=

J

v X | 1 e L
Figure 2.2-2 Imp oncentration profile fi

* Mjis aconstant called grading coefficient and its value ranges from

1/3 to % depending on the way the concentration changes from the P
to the N side of the junction



Large Signal Depletion Capacitance

*  The equations for the depletion capacitance given before are valid
only for small changes in the applied voltage

* ltis extremely difficult and time consuming to accurately take this non
linear capacitance into account when calculating the time to charge
or discharge a junction over a large voltage change

*  Acommonly used approximation is to calculate the charge stored in
the junction for the two extreme values of applied voltage, and then
through the use of AQ = CAV, calculate the average capacitance
accordingly

C |l av,)-a(v,) | The approximation is
T VL,V pessimistic



Large Signal Depletion Capacitance

~ NoNg (o N N V| v
Q(V)—\/Zq TN b V)—\/Zq N R ¢(1 qbo)_qua: (1 qbo)
_lae, NoN, \/ N, Ny
_\/2¢ONA+ND 96N TN, - Coved
| | el
_lav,)-a(v,)| _ by bo
Ci- V,—V | = 2¢oCy | V,—V, |




Example

Find a rough approximation for the junction capacitance to be used to estimate
the charging time of a reverse biased junction from 0V to 5V (or vice versa).

Assume ¢, = 0.9V
=l

=5-0|




