Problem Set #1

PB 🖸

Given an RC circuit which input is a voltage step from 0 to $V_{\rm DD}$, and which output is the voltage on the capacitor, derive the circuit delay time (time it takes the output voltage to reach the 50% of its final value), and the circuit rise time (time it takes the output voltage to go from the 10% to the 90% of its final value).

Verify the correctness of your results using MATLAB.

PB1

Use matlab to confirm the statements on slides 6 and 7 of the slide set on first and second order circuits.

PB2.

Consider the following system:

The current drawn by the load is time varying

Assuming the system can be resonably modeled as follows:

$$V_s = 1.5V$$

$$R_1 = 1 K_{SL}$$

$$T = 5 ns$$

- a. sketch $i_L(t)$ and $v_x(t)$
- b. In order for the electronic circuit to work correctly the voltage vx across it, should

- not vary more than ±100 mV w.r.t. the nominal voltage supply $V_S = 1.5V$ If this is not the case how can you modify the system to fix the issue?
- c. Draw a model of your "modified" system (make sure to properly size any component you add to the original model)
- d. SPICE the model with and without modification and illustrate that your modification represent a significant improvement.

 Make sure to illustrate that the SPICE results are reasonably close to your expectations.

	×		