UNIX/Linux Quick Start

talarico
Rectangle

talarico
Rectangle

This tutorial list some of the most common unix/linux commands. To learn more about each
command and its options, read the associated man page, e.g. man command

Getting Help

man man

man subject

Display how to use the online manual pages

Looks up subject in the online manual pages

man -k keyword Search all manual entries for a particular keyword in the title

apropos keyword Search all manual entries for a particular keyword in the title (same as man —k)

whereis command Locate the binary, source, and manual page files for a command

which command Locate a command path

help

Display information about bash built-in commands

whatis command Display the title line of command’s man page

Managing the file system

cd dir
cd ..
~user
cd

Is

Is —F
Is -a
Is -A

Go to the directory called dir

Go to the parent directory (the directory above the current directory)
Current directory

Parent directory

Home directory

Home directory of user

Go to your home directory

List the files in the current directory

List the files in the current directory, and indicate subdirectories by appending a
backslash (/) to their name

List all the files in the current directory, including the hidden ones. Hidden files are
prefixed by a dot

List almost all the files in the current directory (list the hidden files, but do not list
implied - and . .)

2|

Is -1 List all files in the current directory using the long format (the long format shows a

lot of miscellaneous info about each file)
Is —-It Sort files by modification time (the most recently changed file is listed on the top)

cp filel file2 Make a copy of filel and call the copy file2 (if file2 already exists it will be

overwritten)
In —s file target Link symbolically file to target

mv filel file2 Rename a file from old name file1 to new name fileZ (if file2 already exists it will be

overwritten).
mv file dir/ Move file from its present directory into another directory (dir)
mv dirl dir2 Move or rename a directory from old name dirl to new name dir2
rm file Remove file

rm —r dir Remove directory dir (-r recursively remove dir contents; if you

also would like to be prompted before removing files add —i)
pwd Print name of current/working directory
passwd Set or change your local login password
mkdir dir Create a new directory dir

rmdir dir Remove empty directory dir (if the directory is not empty use: rm —r dir)

find . —name file —print Finds all paths containing file in the current directory or
below it

wc file Counts the lines, words, and characters in file

du Displays disk usage in Kbytes by directory, starting in the current directory and

working down

du file Display disk usage in Kbytes for file (or directory)
du -s Summarize total disk usage
gz ip options files Compress or expand files. Compressed files are stored with . gz ending

gunzip options files Compress or expand files. Compressed files are stored with . gz ending

tar options files Create or extract archives of files. Archived files are stored with . tar ending

3

tee file Split the output of a program so that it can be seen on the display and also be
saved in a file. (tee —a file appends the output to the end of file instead of
writing over it).

Example: echo “hello” | tee logfile
unigqfile Remove repeated lines in file
touch file Create an empty file or update the time stamp of an existing file
sort options file Sort the lines of file according to the options chosen
hostname Display the name of the current machine

When specifying a path, use the / character to separate directories and file names.

Viewing files

less file Shows the contents of file
type q to quit the listing of text and return to the shell prompt
type ctrl-u to scroll up half screen size
type ctrl-d to scroll down half screen size
type j to scroll down one line
type Kk to scroll up one line

file file Determine the type of a file

cat files Concatenate and display files

spell file Reports possible misspelled words in file

difffilel file2 Display differences between two text files

cmp filel file2 Compare two files (text or binary) and list where differences occurs
grep options expr files Searches files for a specified string or expression

head file Shows the first few lines (by default 10 lines) of file

tail file Shows the last few lines (by default 10 lines) of file

Editing files

vim file advanced text editor (widely used)

4|

gvim file graphical implementation of vim

emacs file extensible, customizable, self-documenting, real-time display text editor
(widely used)

nano file small, friendly to use text editor

gedit file official text editor for the GNOME desktop environment

Managing Processes

ps List the status of all processes started during your login session
jJjobs Listall background jobs started during your login session

top Display system summary information as well as a dynamic real time view of running tasks
currently being managed by the OS kernel

kill Kill an unwanted process. The process to Kill is specified through
the process id number (pid#) or the job control number (%n):
kil l pid#
OR
kill %n

Useful Tips and Commands

history List the most recent commands executed

Ly Repeat the last command

In Repeat command n from the history list

VPATTERN Repeat last command beginning with PATTERN

Ctri+p Scroll backward through the previous shell commands
up-arrow Scroll backward through the previous shell commands
down-arrow Scroll forward through the previous shell commands
Ctri+u Delete the last line you typed

Tab While typing, complete file/path name as much as possible

Delete or Backspace Erase the last character you typed

51

clear

sTtp user@host
ssh —CY user@host
exit

Ctril+c

ctrl+z

%

command &

fgrep —i pattern file
whoami

W

date

chmod options file
chgrp group file
chgrp owner file
source file

script

dmesg

echo “some message”

Clears the screen

Secure file transfer session

Secure access to a remote computer
Cause normal process termination
Terminate the active program.

Suspend the current active program. To bring it back, use

%jobnumber, e.g. %1 (the number comes from the jobs list)
Continue last job suspended. Alternatively type Fg (foreground)

wn

Wildcard. Any number of characters (not “.”). Can be used to express
patterns matching multiple file names (e.g. typing Is —1 dir/*.sp
will list all dir files ending with .sp)

“«

Any single character (not “.”).

If you put & at the end of a command, the process runs in the

background, letting you type more commands on the shell (e.g.
firefox &)

Display all lines in file that contain pattern (case insensitive)
Displays the logged-on user’s name

Report who is logged in and what they are doing

Display the current date and time

Change the permissions on a file (or directory)

Change the group of a file (or directory)

Change the ownership of a file (or directory)

Execute the lines in file as if they where typed to the shell

Start saving everything that happens in a file, Type exit when done.
Print the system'’s boot up messages

Print the string some message on the screen

6|

diff and grep utilities

diff —c filel file2

Compare files line by line. The output put + in front of lines that are added in file2, — in front of the
lines that are deleted in file2 and! in front of the lines that were changed in file2.

grep [option(s)] pattern [file(s)]

grep (general regular expression print) print lines matching a pattern. It searches for the specified
pattern in file(s), or if you choose to omit file(s) it searches the terminal’s standard input.

grep —1i pattern files makes the search case-insensitive

grep —V pattern files negate the search (the search will return everything that doesn’t
match the pattern)

Examples:

grep “area()” program.c looks for all the lines where the string “area()” occurs in program.c

grep “area(.*)” program.c grep can match not only exact strings, but also general patterns.
These patterns are called “regular expressions”. A . in a grep pattern
matches any character(including no character), and following it with
a * means the character can be repeated any number of times
(including zero times). Consider the case where area() takes a
number of arguments.

grep Exception logfile.txt | grep -v ERROR Search logfile.txt for occurrences of Exception
but exclude all occurrences that contain
ERROR

grep -c "ERROR" logfile.txt Print how many times patterns containing ERROR occurred in
logfile.txt

egrep 'ERROR|Exception’ logfile.txt Search for either pattern containing ERROR or
Exception in logfile.txt

grep -w ERROR logfile.txt Searches only for instances of ERROR that are entire words. For
example it does not match SysERROR

grep 'ERROR\>' logfile.txt Searches only for patterns ending in ERROR. For example it matches
the word SysERROR

grep "\<ERROR' logfile.txt Searches only for patterns starting in ERROR. For example it
matches the word ERRORSys, but not SysERROR.

7|

grep ‘\<ERROR\>’ logfile.txt Equivalent to grep -w ‘ERROR’ logfile.txt

grep -1 'main’ *.java List the names of all java files in the current directory whose
contents mention main.

grep -n ERROR logfile.txt ~ Shows on which lines the pattern ERROR has appeared

Note: the use of single quote ‘ or double quote “ for delimiting regular expressions is primarily
meant to deal with white spaces. In Unix/Linux the exact behavior of the single quotes and the
double quotes is actually dependent on the shell. In our case we assume the use of the bash shell.
The choice between single or double quotes is only important if the search string contains variables
or items that you expect to be “evaluated”. With single quotes, the string is taken literally, no
expansion takes place. With double quotes, variables are expanded.

Example:
VAR=""Kameamea"

grep "$VAR" logfile.txt

grep "$VAR" logfile.txt

The first grep will look for the literal string $VAR. The second will expand the $VAR variable and
look for the string Kameamea.

In doubt, a simple tip to find out what we should expect is to use the echo command.

echo "$VAR"

will print $VAR

echo “$VAR”

will print Kameamea.

There are three version of grep in UNIX: grep, fgrep, egrep. fgrep stands for “fixed grep”, and egrep
stands for “extended grep”. The difference between grep and fgrep is that while grep matches
regular expressions, fgrep matches literal strings. When you want to search for an ordinary string, if
you use fgrep, there is no need to precede special characters with \. The difference between grep
and egrep is that egrep supports an extended set of regular expressions and allows for a few more
useful features

Regular Expressions by Example

A regular expression, also referred to as regex or regexp, is a sequence of characters that provides a
concise and flexible means for matching strings of text, such as particular characters, words, or
patterns of characters.

grep -w 't[a-i]e’

The brackets have a special meaning. They mean to match one character that can be anything from
a to i. It matches words like tee, the, and tie.

grep -w 'cr[a-m]*t’'
The * means to match any number (including zero) of the previous character, which in this case is

any character from a through m. It matches words like craft, credit, and cricket. Also note that since

8 |

the * means to match any number of characters including no characters, for example: cr[a-m]*t
could match the letter sequence crt that is cr and a t with zero characters between them.

grep -w 'kr.*n’

The . matches any character and the * means to match the dot any number of times. It matches
words like kremlin and krypton, but also krn.

egrep -w '(th|sh).*rt’'

The | means to match either the th or the sh. egrep is just like grep but supports extended regular
expressions that allow for the | feature. Note how the square brackets mean one-of-several-
characters and the round brackets with |'s mean one-of-several-words. It matches words like shirt,
short, and thwart.

grep -w 'thr[aeiou]*t'

A list of possible characters can be placed inside the square brackets. It matches words like threat
and throat.

grep -w 'thr[*a-f]*t'

The * after the first bracket means to match any character except the characters listed. It matches
words like throughput and thrust, but the word thrift is not matched because it contains an f.

grep -w '$VAR'

It searches for the word $VAR

grep -w "$VAR"

It searches for the value of the variable $VAR (e.g. Kameamea)
egrep ‘colou?r’

[t might match both colour and color

egrep ‘co{3}

[t might match cool

egrep ‘co{l1,}

[t might match color and coool

Usually, you will use regular expressions to search for whole lines that match, and sometimes you
would like to match a line that begins or ends with a certain string. The * character specifies the
beginning of a line, and the $ character the end of the line. For example, “*The” matches all lines

9|

that start with a The, and “hack$” matches all lines that end with hack, and
"N *The.*hack *$" matches all lines that begin with The and end with hack, even if there is
whitespace at the beginning or end of the line.

Because regular expressions use certain characters in a special way (these are.\ [] * + ?7), these
characters cannot be used to match characters. This restriction would severely limits you from
trying to match, for example, file names, which often use the . character. To match a . you can use
the sequence \. which forces interpretation as an actual . and not as a wildcard (wildcard or meta-
character is an alternative term for special character). The regular expression myfile.txt might
match the letter sequence myfileqtxt or myfile.txt, but the regular expression myfile\.txt will match
only myfile.txt.

Summary of basic special characters

n Match the empty string at the beginning of a line

$ Match the empty string at the end of a line.

\ Turn off the special meaning of the next character

[1] Match any one of the enclosed characters, as in [aeiou].
or use Hyphen "-" for a range, as in [0-9].

1 Match any one character except those enclosed in [|,.

Match any single character, except new line

The preceding item is optional and matched at most once.

The preceding item will be matched zero or more times.

The preceding item will be matched one or more times.

{n} The preceding item is matched exactly n times.

{n,} The preceding item is matched n or more times.

{,m} The preceding item is matched at most m times.

{n,m} The preceding item is matched at least n times, but not more than m times.

Standard Input and Output

All standard Unix/Linux commands make use of 3 standard 1/0 file descriptors:

fd (file descriptor) | Description Name Default
0 Standard input Stdin Keyboard
1 Standard output Stdout Screen
2 Standard error Stderr Screen
1/0 Redirections

command > filename

Write the stdout of command to filename. If filename already exists it

will be overwritten.

10 |

command >> filename

command 2> filename

command 2>> filename
command < filename

command << word

commandl | command2

n>&N

Examples:

date > datefile

Append the stdout of command to the end of an existing filename

Write the stderr of command to filename. If filename already exists it
will be overwritten.

Append the stderr of command to the end of an existing filename
Read the command’s stdin from filename

Read the following lines until a line with only word and use these as
stdin

Redirect the output of command1 to the input of command2. This is

called “piping” the output of the first command into the input of the
second command.

Set the file descriptor n to whatever the file descriptor N points to. If
n is missing, the default used is stdout.

Store the output of the date command in a file named datefile

gcc sample.c 2>> errfile Compile the file sample.c and append the error messages in a

file named errfile

Is existingfile nonexistingfile > logfile 2>&1 Save both stdout and stderr in

a file named logfile

Is existingfile nonexistingfile 2>&1 > log The rule is that any

redirection sets the file
descriptor (a.k.a. handle) to
the output stream
independently.

2>&1 set handle 2 (stderr) to
handle 1 (stdout); then > set
handle 1 to the file log, but it
does not change handle 2
(stderr). The result is that the
standard output is written to
the file log, but errors are sent
to the screen.

echo “hello” > /dev/null Discard stdout

echo “hello” >&2

Redirect stdout to stderr

11 |

Is existingfile nonexistingfile > /dev/null 2> errlog Discard stdoutbut
write stderr in a file
named errlog

Is -Irt | tee listfile Direct the output of the Is command to both stdout and the
file listfile

References

[1.] Sobell, A Practical Guide to Linux Commands, Editors, and Shell Programming, 2 /e, Prentice Hall, 2009,
pp.257-263

[2.] Mike Lamasney, Introduction to Unix Usage, UC Berkeley, 1996

[3.] CS 107: Computer Organization and Systems (Spring 2011), Stanford University, Julie Zelenski
https://courseware.stanford.edu/pg/courses/169631/cs107-spring-2011

[4.] UNIX Documentation at Stanford, Stanford University Information Technology Services

https://itservices.stanford.edu/service /unixcomputing/unix

[5.] UNIX Command Summary, Stanford University Information Technology Services
https://itservices.stanford.edu/service /unixcomputing/unix /unixcomm
[6.] Common unix commands and utilities, Stanford University School of Earth Sciences

https://itservices.stanford.edu/service /unixcomputing/unix/unixcomm

http://pangea.stanford.edu/computing/unix/shell/commands.ph
[7.] Redirection

http://en.wikipedia.org/wiki/Redirection (computing)
[8.] Paul Sheer, LINUX, 2002

http://rute.2038bug.com/rute.html.gz

12| Page

