

Digital Systems: Quick Review

Digital System

 Transform signals that can be abstracted as discrete in range and domain

Analog & (vs.) Digital

- Analog Circuits Advantages
 - Require less devices
 - Better to deal with low signal amplitudes
 - Better to deal with high frequencies
- Digital Circuits Advantages
 - More "adaptable" (e.g. microprocessor)
 - Design can be done at a more abstract level
 - Better economic

Types of Digital Circuits

Combinational

The value of the outputs at any time t depends only on the combination of the values applied at the inputs at time t (the system has no memory)

Sequential

The value of the outputs at any time t depends not only on the values applied at the inputs at time t but also on the past sequence of inputs that have been applied to it (system with memory)

C.L.: effect of gate delays

- The analysis of combinational circuits ignoring delays can predict only the steady-state behavior of a circuits. That is they predict a circuit's output as a function of its inputs under the assumption that the inputs have been stable for a long time, relative to the delays into the circuit's electronics.
- Because of circuit delays, the transient behavior of a combinational logic circuit may differ from what is predicted by a steady-state analysis.
- In particular a circuit's output may produce a short pulse (often called a glitch) at a time when steady state analysis predicts that the output should not change.

C.L.: Timing Hazards

- A glitch is an unwanted pulse at the output of a combinational logic network – a momentary change in an output that should not have changed.
- A circuit with the potential for a glitch is said to have a hazard.
- An hazard is something intrinsic about a circuit; a circuit with hazard may or may not have a glitch depending on input patterns and the electric characteristics of the circuit.

When do C.L. circuits have Hazards?

 Hazards are potential unwanted transients that occur in the output when different paths from input to output have different propagation delays

Types of Hazards (on an output)

The output undergoes a momentary transition when it is expected to remain unchanged

(a) Static 1-hazard

(b) Static 0-hazard

The output changes multiple times as the result of a single input transition

(c) Dynamic hazards

Detection of Static 1-Hazards

Basically because of gate delays for a moment when B changes is not true that B+B=1

Temporary violation of complementary law.

Removing Static Hazards

• The fundamental strategy for eliminating an hazard is to add redundant prime implicants (extra prime implicants won't change F, but can cause F to be asserted independently of the change to the input that cause the hazard).

circuit with hazard removed

Detection of static 0-Hazards

(a) Circuit with a static 0-hazard

(b) Karnaugh map for circuit of (a)

Temporary violation of complementary law

 $F = \frac{(A+C)}{(\bar{A}+\bar{D})}.$ $(\bar{B}+\bar{C}+\bar{D})$

Removing Static Hazards

The circuit has
4 potential
sources of
hazards
that must be
removed

$$F = (A+C) \cdot (\overline{A}+\overline{D}) \cdot (\overline{B}+\overline{C}+D) \cdot (C+\overline{D}) \cdot (A+\overline{B}+D) \cdot (\overline{A}+\overline{B}+\overline{C})$$

In theory: we need to focus only on one type of hazard!

- A properly designed two level AND-OR circuit has no static 0-hazards. A static 0-hazard would exist only if both a variable and its complement were connected to the same AND gate, which would be a nonsense (A·A'·X=0)
- A properly designed two level OR-AND circuit has no static 1-hazards. A static 1-hazard would exist only if both a variable and its complement were connected to the same OR gate, which would be a nonsense (A+A'+X=1)

Dynamic Hazards

- If there are 3 or more paths from an input or its complement to the output the circuit has the potential for a dynamic hazard.
- Three or more paths from an input or its complement to the output can exist only in a multi-level networks. This means that dynamic hazards do not occur in a properly designed two level AND-OR or OR-AND network.
- Analysis and elimination of dynamic hazards is a rather complicated process.
- If you need a hazard free network, it is best to use a 2-level network and use the techniques shown earlier to eliminate the static hazards.

Dynamic Hazard Example

All gates are ideal (very fast) except a slow AND gate and a very slow OR gate

Hazard-Free Design

- Best way to deal with hazards: structure the design so that you do not have to worry about them !!!
- A well-designed, synchronous digital system is structured so that hazard analysis is not needed

• In a synchronous system, all the inputs to a combinational circuit are changed at a particular time, and the outputs are not looked at until they have time to settle to a steady-state value.

Timing Issues in S.L. circuits

- Set-up Time
- Hold Time
- Clock skew

FIG 1.31 CMOS positive-edge-triggered D flip-flop

Setup/Hold Time

- An input to a flip flop can be validly recognized only if:
 - it is stable before the clocking event for a minimum time interval T_{setup} and
 - it is stable after the clocking event for a minimum time interval T_{hold}

Setup/Hold Time Violation

- It is dangerous to allow input signals to change very close to the sampling event (that is the active clock edge)
- If setup or hold time constraints are not satisfied, the input maybe interpreted as a 1 or a 0 or some unrecognizable value between 0 and 1 (metastable value)

Timing Constraints in S.L. circuits

Let's assume din is applied in a way that satisfies setup and hold time for FF1, and let's examine what happen to FF2

Timing constraints in sequential circuits

Timing constraints in sequential circuits

Timing constraints in sequential circuits

Max/Min delays

Setup constraint $t_{FF1} + t_P < T_{clock} - T_{su2}$

 $t_{FF1} + t_P > T_{h2} \qquad H$

Hold constraint

- Unfortunately, delays through gates are not constant. Delays change with:
 - Supply Voltage, Temperature, and Manufacturing Process
- Setup constraint is more difficult to satisfy when delays are max (V_{DD}↓, T↑, P↑)
- Hold constraint is more difficult to satisfy when delays are min $(V_{DD}\uparrow, T\downarrow, P\downarrow)$

$$-$$

 $V_{DD} \downarrow \rightarrow V_{gs} \downarrow \rightarrow I_{ds} \downarrow \rightarrow it takes longer to charge <math>C_L$

 $T \uparrow \rightarrow \mu \downarrow \rightarrow \beta \downarrow \rightarrow I_{ds} \downarrow \rightarrow$ it takes longer to charge C_L

$$Ids = \beta(Vgs - VT)^2$$

Minimum Clock period for a Sequential circuit

max frequency at which the circuit can

Minimum clock period (t_{clk})

Minimum Clock Period for a Sequential Circuit

make sure to compute it with max delays

Clock skew

Design Abstraction Levels

Moore's Law

- In 1963 Gordon Moore predicted that as a result of continuous miniaturization transistor count would double every 18 months
 - 53% compound annual growth rate over 45 years
 - No other technology has grown so fast so long
 - Transistors become smaller, faster, consume less power, and are cheaper to manufacture

The Design Productivity Gap

CAD Tools

 Designers rely on design automation software tools to seek productivity gains and to cope with increased complexity

Types of ICs Design Style

- * Full-custom
- * Semi-custom
 - Cell Based
 - Gate Arrays
- * Programmable
 - CPLD and FPGA

Back ... to Design Abstraction Levels

$$Z = A \cdot \bar{S} + B \cdot S$$

Logic Equation

Truth Table

S	Α	В	Z
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

SB Gate Level Model

ASN

... Design Abstraction Levels

... Design Abstraction Levels: HDL

```
library ieee;
use ieee.std logic 1164.all;
library altera;
use altera.altera primitives components.all;
entity mux is
port (A, B, S: in std logic;
             out std logic);
end mux;
architecture struct of mux is
component INV is:
 port A: in std logic;
      F: out std logic);
end component;
component AND2 is:
 port A, B: in std logic;
      F: out std logic);
end component;
component OR2 is:
 port A, B: in std logic;
      F: out std logic);
end component;
```

signal SN, ASN, SB: std_logic;

begin

U1: port map INV (S, SN); U2: port map AND2 (A, SN, ASN); U3: port map AND2 (S, B, SB); U4: port map OR2 (ASN, SB, Z);

end struct;

A ASN ASN SB SB SB

structural coding

- implement hierarchy
- infer "special" logic blocks (e.g. SRAM)

talarico@gonzaga.edu

... Design Abstraction Levels: HDL

```
library ieee;
use ieee.std_logic_1164.all;

entity mux is
port (A, B, S: in std_logic;
        Z: out std_logic);
end mux;

architecture rtl_conc of mux is
begin
    Z <= A when S = '0' else B;
end rtl_conc;
```

concurrent RTL coding

Preferred Style

```
library ieee;
use ieee.std logic 1164.all;
entity mux is
port (A, B, S: in std logic;
      Z:
             out std logic);
end mux:
architecture rtl of mux is
begin
 process mux p (A, B, S)
  if (S = '0') then
   Z \leq A:
  else
    Z <= B:
  end if;
 end process mux p;
end rtl;
```

sequential RTL coding