The CMOS Inverter

Slides adapted from:
N. Weste and D. Harris, *CMOS VLSI Design*Addison-Wesley, 3/e, 2004

Outline

- Robustness of CMOS Inverter The Static Behavior
 - Switching threshold
 - Noise Margins
- Performance of CMOS Inverter Dynamic Behavior
 - Propagation delay
- Power Dissipation
 - Static dissipation
 - Dynamic dissipation

Q&A

- 1. If the width of a transistor increases, the current will increase decrease not change
- 2. If the length of a transistor increases, the current will increase decrease not change
- 3. If the supply voltage of a chip increases, the maximum transistor current will increase decrease not change
- 4. If the width of a transistor increases, its gate capacitance will increase decrease not change
- 5. If the length of a transistor decreases, its gate capacitance will increase decrease not change
- 6. If the supply voltage of a chip increases, the gate capacitance of each transistor will increase decrease not change

Q&A

- 1. If the width of a transistor increases, the current will increase decrease not change
- 2. If the length of a transistor increases, the current will increase decrease not change
- If the supply voltage of a chip increases, the maximum transistor current will increase decrease not change
- 4. If the width of a transistor increases, its gate capacitance will increase decrease not change
- 5. If the length of a transistor decreases, its gate capacitance will increase decrease not change
- 6. If the supply voltage of a chip increases, the gate capacitance of each transistor will increase decrease not change

CMOS Inverter Static Behavior: DC Analysis

FIG 2.23 A CMOS inverter

CMOS Inverter: DC Analysis

- DC Response: V_{out} vs. V_{in} for a gate
- Inverter
 - When $V_{in} = 0$ \rightarrow $V_{out} = V_{DD}$
 - When $V_{in} = V_{DD} \rightarrow V_{out} = 0$
 - In between, V_{out} depends on transistor current
 - By KCL, must settle such that
 - $|I_{dsn} = |I_{dsp}|$
 - We can solve equations
 - Graphical solution gives very good insight

Transistors operation regions

- Current depends on transistor's operation region
- For what V_{in} and V_{out} are nMOS and pMOS in
 - Cutoff ?
 - Linear ?
 - Saturation ?

nMOS and pMOS operation

Table 2.2	Relationships between voltages for the three regions of operation of a CMOS inverter				
	Cutoff	Linear	Saturated		
nMOS	$V_{gsn} < V_{tn}$	$V_{gsn} > V_{tn}$	$V_{gsn} > V_{tn}$		
	$V_{\rm in} < V_{tn}$	$V_{\rm in} > V_{tn}$	$V_{\rm in} > V_{tn}$		
		$V_{dsn} < V_{gsn} - V_{tn}$	$V_{dsn} > V_{gsn} - V_{tn}$		
		$V_{\rm out}$ < $V_{\rm in}$ - V_{tn}	$V_{\rm out} > V_{\rm in} - V_{tn}$		
pMOS	$V_{gsp} > V_{tp}$	$V_{gsp} < V_{tp}$	$V_{gsp} < V_{tp}$		
	$V_{\rm in} > V_{tp} + V_{DD}$	$V_{\rm in} < V_{tp} + V_{DD}$	$V_{\rm in}$ < V_{tp} + V_{DD}		
		$V_{dsp} > V_{gsp} - V_{tp}$	$V_{dsp} < V_{gsp} - V_{tp}$		
		$V_{\rm out} > V_{\rm in} - V_{tp}$	$V_{\rm out} < V_{\rm in} - V_{tp}$		

Graphical derivation of the inverter DC response: I-V Characteristics

- Make pMOS wider than nMOS such that $\beta_n = \beta_p$
- For simplicity let's assume V_{tn}=-V_{tp}

Graphical derivation of the inverter DC response: current vs. V_{out}, V_{in}

- Load Line Analysis:
 - For a given V_{in}:
 - Plot I_{dsn}, I_{dsp} vs. V_{out}
 - V_{out} must be where |currents| are equal

•
$$V_{in} = 0$$

•
$$V_{in} = 0.2 V_{DD}$$

•
$$V_{in} = 0.6 V_{DD}$$

•
$$V_{in} = 0.8 V_{DD}$$

•
$$V_{in} = V_{DD}$$

DC Transfer Curve

Transcribe points onto V_{in} vs. V_{out} plot

In region C both transistors are in saturation: Ideal transistors are only in region C for $V_{in} = \frac{V_{DD}}{Z}$ and the DC curve slope in C is $-\infty$.

The crossover point where Vin=Vont is called input threshold.

DC transfer curve: operating regions

FIG 2.23 A CMOS inverter

Table 2.3 Summary of CMOS inverter operation					
Region	Condition	p-device	n-device	Output	
A	$0 \le V_{\rm in} < V_{tn}$	linear	cutoff	$V_{\rm out} = V_{DD}$	
В	$V_{tn} \le V_{\rm in} < V_{DD}/2$	linear	saturated	$V_{\rm out} > V_{DD}/2$	
С	$V_{\rm in} = V_{DD}/2$	saturated	saturated	$V_{ m out}$ drops sharply	
D	$V_{DD}/2 < V_{\mathrm{in}} \le V_{DD} - V_{tp} $	saturated	linear	$V_{\rm out}$ < $V_{DD}/2$	
E	$V_{\rm in} > V_{DD} - V_{tp} $	cutoff	linear	$V_{\rm out}$ = 0	

Beta Ratio

• If $\beta_p / \beta_n \neq 1$, switching point will move from $V_{DD}/2$

FIG 2.26 Transfer characteristics of skewed inverters

Noise Margins

 How much noise can a gate input see before it does not recognize the input?

Noise Margins

 To maximize noise margins, select logic levels at unity gain point of DC transfer characteristic

DC parameters

- Input switching threshold: V_{TH}
- Minimum high output voltage: V_{OH} quality of the logic values Maximum low output voltage: V_{OL} provided by the gate
- Minimum HIGH input voltage: V_{IH}
- Maximum LOW input voltage: V_{IL}

CMOS Inverter Dynamic Behavior: AC Analysis

- DC analysis tells Vout if Vin is constant
- AC analysis tells Vout(t) if Vin(t) changes
 - Requires solving differential equations
 - Input is usually considered to be a step or ramp from 0 to VDD or vice versa

FIG 2.23 A CMOS inverter

Ac analysis = transient analysis = switching analysis = dynamic analysis

CMOS Inverter Dynamic Behavior: AC Analysis

- The switching characteristic (Vout(t) given Vin(t)) of a logic gate tells the speed at which the gate can operate
- The switching speed of a logic gate can be measured in terms of the time required to charge and discharge a capacitive load
- Critical paths
- Timing Analyzers automatically finds the slowest paths in a logic design
- Critical paths can be affected at various levels:
 - Architecture/ Micro-architecture Level
 - Logic Level
 - Circuit Level
 - Layout level

Inverter Step Response

Find step response of inverter driving load cap

$$\begin{aligned} V_{in}(t) &= u(t - t_0)V_{DD} \\ V_{out}(t < t_0) &= V_{DD} \\ \frac{dV_{out}(t)}{dt} &= -\frac{I_{dsn}(t)}{C_{load}} \end{aligned}$$

$$I_{dsn}(t) = \begin{cases} 0 & t \leq t_0 \\ \frac{\beta}{2} \left(V_{DD} - V_t \right)^2 & V_{out} > V_{DD} - V_t \\ \beta \left(V_{DD} - V_t - \frac{V_{out}(t)}{2} \right) V_{out}(t) & V_{out} < V_{DD} - V_t \end{cases}$$

$$t_0$$

Delay Parameters

- t_r: rise time
 - From output crossing 0.2 V_{DD} to 0.8 V_{DD}
- t_f: fall time
 - From output crossing 0.8 V_{DD} to 0.2 V_{DD}
- t_{pdr}: rising propagation delay
 - From input crossing $V_{DD}/2$ to rising output crossing $V_{DD}/2$
- t_{pdf}: falling propagation delay
 - From input crossing $V_{DD}/2$ to falling output crossing $V_{DD}/2$
- t_{pd}: average propagation delay

$$- t_{pd} = (t_{pdr} + t_{pdf})/2$$

Delay Parameters cont.

- t_r, t_f
 - Tells how steep can be the waveform that the logic gate is able to provide at its output
- t_{pdr}, t_{pdf}
 - Input-to-output delay of the logic gate (time needed for the output to respond to a change in the input)

Factors affecting delay

- C_{LOAD} (= C_{intrinsic} + C_{extrinsic})
 - intrinsic capacitance
 (parasitic capacitance of the driving logic gate)
 - extrinsic capacitance
 (interconnect capacitance + capacitance of the stage driven)
- Slope of the input waveform
 - As the voltage on the gate terminal of a transistor change so does its capacitance

Simulated Inverter Delay

- Solving differential equations by hand is too hard
- SPICE simulator solves the equations numerically
 - Uses more accurate I-V models too!
- But simulations take time to write
- It is important to develop back of the envelope techniques to rapidly estimate delay, understand its origin, and figure out how it can be reduced

Delay Estimation (*Revisited*)

- We would like to be able to easily estimate delay
 - Not as accurate as simulation
 - But easier to ask "What if?"
- The step response usually looks like a 1st order RC response with a decaying exponential.
- Use RC delay models to estimate delay
 - C = total capacitance on output node
 - Use effective resistance R
 - So that $t_{pd} = RC$
- Characterize transistors by finding their effective R
 - Depends on average current as gate switches

$$R = \ln 2 \cdot \Re$$

RC Delay Models

- Use equivalent circuits for MOS transistors
 - Ideal switch + capacitance and ON resistance
 - Unit nMOS has resistance R, capacitance C
 - Unit pMOS has resistance 2R, capacitance C
- Capacitance proportional to width
- Resistance inversely proportional to width

Power Dissipation

 Static CMOS gates are very power-efficient because they dissipate nearly zero power while idle

• Instantaneous power:
$$P = i_{DD}(t) \cdot V_{DD}$$

• Energy consumed:
$$E = \int_{0}^{T} i_{DD} \cdot V_{DD} dt$$

• Average power:
$$P_{avg} = \frac{1}{T} \int_{0}^{T} i_{DD} \cdot V_{DD} dt$$

Power Dissipation

- Power dissipation in CMOS circuits comes from two components:
 - Static Dissipation
 - Subtreshold conduction
 - Tunneling current
 - Leakage through reverse biased diodes
 - Dynamic Dissipation
 - Charging and discharging (switching) of the load capacitance
 - "Short-Circuit" current while both pMOS and nMOS networks are partially ON

Static Dissipation

$$P_{\text{static}} = V_{\text{DD}} \cdot I_{\text{leakage}}$$

- OFF transistors still conduct a certain amount of current :
 - Sub threshold current
 - Current through reverse biased diodes
 - gate tunneling current

FIG 4.26 CMOS inverter model for static power dissipation evaluation

• In 130 nm processes and beyond leakage is becoming a major design issue and vendors now provide leakage data (often in the form of nA/ μ m of gate length)

Dynamic Dissipation

$$P_{\text{dynamic}} = P_{\text{sw}} + P_{\text{sc}} = \frac{1}{T} \int_{0}^{T} i_{\text{DD}}(t) \cdot V_{\text{DD}} dt = \frac{V_{\text{DD}}}{T} \int_{0}^{T} i_{\text{DD}}(t) dt$$

Assuming a logic gate goes through one complete charge/discharge cycle every clock cycle:

$$P_{sw} = C \cdot V_{DD}^2 \cdot f_{clock}$$

Because most gates do not switch every clock cycle, we introduce a corrective activity factor α :

$$P_{sw} = \alpha \cdot C \cdot V_{DD}^2 \cdot f_{clock}$$

A clock has α =1 because it rises and fall every cycle, but most data have a maximum activity factor α =0.5 because they transition only once every cycle

Dynamic Dissipation

- Because, input rise/fall time is greater than zero, both nMOS and pMOS will be ON for a short period of time (while the input is between V_{tn} and $VDD-|V_{tp}|$)
- This results in a "short-circuit" current pulse from VDD to GND
- Typically this increases power dissipation by about 10%

Low Power Design

Power Dissipation is a major problem !!!

FIG 4.69 Intel processor power consumption. © IEEE 2001.

FIG 4.70 Dynamic and static power trends. © IEEE 2003.

Dynamic Power Reduction

- Decrease activity factor
 - Selective clock gating
 - Drawback: if the system transitions rapidly from an idle mode to a fully active mode a large di/dt spike will occur
- Decrease switching capacitance
 - Small transistors
 - Careful floor planning to reduce interconnect
- Decrease power supply
 - Adjust voltage depending on the operating mode
- Decrease operating frequency

Static Power Reduction

- Subthreshold current can be reduced by increasing V_t
 - Selective application of multiple threshold (low-V_t transistors on critical paths, high V_t transistors on other paths)
 - Control V_t through the body voltage

FIG 4.27 Body bias

Static Power Reduction cont.

- Turn off the power supply entirely. MTCMOS circuits use low V_t transistors for computation and high V_t transistor as a switch to disconnect the power supply during idle mode
- The leakage through two series OFF transistor is much lower (10-20x) than that of a single transistor (stack effect)

FIG 4.28 MTCMOS

FIG 4.29 Leakage stack effect

Energy Delay Product (1/2)

• Delay is proportional to CV_{DD}/I_{dsat} ($\tau = Q/I$)

$$\tau = \kappa \frac{C \cdot V_{DD}}{(V_{DD} - V_{T})^{\eta}}$$

 κ reflect technology parameters

 η account for velocity saturation

Switching energy is proportional to CV_{DD}²

$$E_{sw} = \alpha \cdot C \cdot V_{DD}^2$$

Energy Delay Product (2/2)

$$EDP = K \frac{C^2 \cdot V_{DD}^3}{(V_{DD} - V_T)^{\eta}}$$

• **BUT** ... unfortunately there is also the leakage energy:

$$E_{leak} = I_{leak} \cdot \frac{V_{DD}}{f} = I_{off} \cdot e^{\frac{Vgs - V_{T}}{nv_{TH}}} (1 - e^{-Vds/v_{TH}}) \cdot \frac{V_{DD}}{f}$$
Source: Kaushik Roy

 I_{off} is the subthreshold current at Vgs=0 and $Vds=V_{DD}$ v_{TH} is the thermal voltage