
 

Interconnects

vXY=R⋅i

All materials have 
electrical resistance

Sheet Resistance

R=ρ l
A
=ρ l

t⋅w
=ρ

t
l
w

=R□
l
w

The ratio l/w is referred to
as the number of squares
of wire



 

Resistance

To keep the resistance of long wire 
small we must make its width big 

It takes 4 times 
more chip area



 

Resistivity
Resistivity depends on temperature



 

Sheet Resistance

Silicide: 
process  of coating a material with a refractory metal 
such as tugsten to decrease the overall resistivity

A refractory material is one that retains its strength at high temperatures

Polysilicon and Diffusion have high resistance (even if silicided)



 

Polysilicon and Diffusion
• Diffusion has high resistance and high capacitance (about 2 

fF/μm: comparable to gate capacitance)

• Avoid diffusion (runners) for wires !

• Polysilicon has lower capacitance but still high resistance

• Use for transistor gates

• Only occasionally for very short wires between gates



 

Resistance of Contacts and Vias
• Contacts and vias have resistance associated with them 

(2 – 20 Ω)

• Use multiple small contacts rather a single large contact

when the current turns at right angle use more contacts



 

Interconnects

C=
ins

t ins
w l

i=C
dv
dt

 t=C
i

 v

Changing the capacitor voltage by an amount ∆v requires a time interval: 

In other words there is a delay in the transmission of the electric signal

A conducting line patterned
on top of an insulating 
layer creates a capacitance 
w.r.t. the silicon substrate 



 

Fringe Capacitance



 

Multilayer Capacitance

•Line to to Line capacitance
•Overlap capacitance

C total=C botC top2C adj

C gnd=C botC top



 

Crosstalk

• Delay effects

• Noise Effects



 

Modeling a single interconnect line

C=
ins

t ins
w l

R=

t

l
w

Simple RC 
lumped model

=RC=
ins

t t ins
l2= l 2

The time delay on an RC line is 
proportional to the square of its 
length



 

Delay and Rise Time of a simple RC

V out t =V pulse [1−e−t /  ]V inp  t =V pulse⋅u t 



 

Lumped vs. Distributed RC model 

• In reality the resistance and capacitance of the line is 
distributed along its entire length



 

• Placing the capacitance at the end overestimate its effect

Improving the lumped-element RC 
model 

=1
2
RC=RC



 

Lumped vs. Distributed Delay

Vin(t) = u(t)



 

Lumped approximations

• The L model is a very poor choice

• The π and T model are equivalent

• It is common practice to model long wires with 3- or 4- π 
segments



 

Delay through a distributed RC



 

Distributed RC: 
analytical approach (1)

 x x+∆x

I(x+∆x,t)I(x,t)

+

V(x,t)

–

+

V(x+∆x,t)

–

V  x , t −V x x , t =Rd I x , t 

I  x , t − I  x x , t =C d

∂V  x x , t 
∂ t



 

Distributed RC: 
analytical approach (2)

C u=
C
l

Ru=
R
l

C d=C u⋅ x
Rd=Ru  x

C d , Rd ????
Capacitance and resistance of a 
single distributed cell

Capacitance and 
resistance per unit 
length

V  x , t −V x x , t =Ru x I x , t 

I  x , t − I  x x , t =Cu x
∂V  x x , t 

∂ t

V  x , t −V x x , t 
 x

=Ru I  x , t 

I  x , t − I  x x , t 
 x

=C u

∂V  x x , t 
∂ t



 

• If we let ∆x → 0 ( and recall that):                                           

V  x , t −V x x 
 x

=Ru I x , t 

I  x , t − I  x x
 x

=Cu

∂V  x x
∂ t

Distributed RC: 
analytical approach (3)

f '  x=lim
h0

f xh− f  x 
h

∂V x , t 
∂ x

=−Ru I  x , t 

∂ I  x , t 
∂ x

=−C u
∂V  x , t 

∂ t

∂
∂ x

 ∂V
∂ x

=−Ru
∂ I
∂ x

∂2V

∂ x2 =RuCu
∂V
∂ t



 

Distributed RC:
analytical approach (4)

∂2V x , t 
∂ x2 = RC

l2

∂V x , t 
∂ t

Diffusion Equation
Does not have a closed 
form solution !!!

Using an input of V(0,t) = Vpu(t) the solution at any point x is:

V  x , t =V P⋅erfc  x2  RC
l2 t ut 

The input voltage is applied at x=0

erfc  =1−erf  = 2


∫


∞

e−2

d 

erf  = 2


∫
0



e−2

d 

With: 

erf 0=0
erf ∞=1
erf −=−erf  

d
d 

erfc  =
−2e−2





 

Practical interconnect modeling

• The driver is modeled by a voltage source and its source resistance 
R1

• The medium wire is modeled by a single segment

• The long wire is modeled by two π-segments



 

Elmore Delay approximation

• For a general RC network we compute the Elmore delay as:

• where:
– the node of interest is node i 

– Ck is the capacitance at node k 

– Rik is the sum of all resistances in common from the source to 
node i and the source to node k

i=∑
k

C k×Rik



 

Example of Elmore Delay Calculation

τD3= 
C1 R1+
C2 (R1+R2) +
C3 (R1+R2+R3) +
C4 R1

τ
D4

 = 
C1 R1 +
C2 R1 +
C3 R1 +
C4 (R4 + R1)



 

Distributed RC: 
approximated approach

• Assume the line has N sections and use Elmore 
approximation:

= C
N

R
N

 C
N

 R
N

 R
N

C
N

 R
N

 R
N

 R
N

...N terms

=CR

N 2 12...N =CR

N 2 ∑
i=1

N

i=CR

N 2

N N1
2


N ∞

RC
2



 

Improving interconnect delay 
through repeaters



 

Example of repeaters



 

Summary: important results

Voltage Range Lumped RC Distributed RC

0→50% (tp) 0.69 RC 0.38 RC

0→63% (τ) RC 0.5 RC

10%→90% (tr) 2.2 RC 0.9 RC

0→90% 2.3 RC 1.0 RC

•  Step Response of lumped and distributed RC networks



 

Design Rules of Thumbs
• w.r.t. propagation delay

– RC effects should be considered only when the propagation delay of 
the interconnect is comparable or larger than the propagation delay 
of the driving gate 

• w.r.t. rise (fall) time

– RC effects should be considered only when the rise (fall) time at the 
line's input is smaller than the rise (fall) time of the line (≈0.9 RC) 

Lcrit= t pgate

0.38RC / l 2

RC delays become dominant for 
interconnect wires longer than Lcrit

t rise0.9RC
If this condition occurs the RC  delay is such 
that the line cannot keep up with the rate 
of change of the signal applied to it
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