Interconnects

Figure 2.15:
Line geometry
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Resistance

w w
To keep the resistance of long wire |< ’\‘ ’{
small we must make its width big

/
¢ ¢ It takes 4 times
J more chip area
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Resistivity

Resistivity depends on temperature

)

Table 4.6 Bulk resistivity of pure metals at 22° C

Metal Resistivity (u€2 ¢ cm)
Silver (Ag) 1.6
Copper (Cu) 1.7
Gold (Au) 2.2
Aluminum (Al) 2.8
Tungsten (W) 5.3
Molybdenum (Mo) 5.3
Titanium (T1) 43.0




Sheet Resistance

Layer Sheet Resistance (Q /)
Diffusion (silicided) 3-10
Diffusion (unsilicided) 50-200
Polysilicon (silicided) 3-10
Polysilicon (unsilicided) 50-400
Metall 0.08
Metal2 0.05
Metal3 0.05
Metal4 0.03
Metal5 0.02
Metal6 0.02

Silicide:
process of coating a material with a refractory metal
such as tugsten to decrease the overall resistivity

A refractory material is one that retains its strength at high temperatures

Polysilicon and Diffusion have high resistance (even if silicided)



Polysilicon and Diffusion

Diffusion has high resistance and high capacitance (about 2
fF/um: comparable to gate capacitance)

Avoid diffusion (runners) for wires !

Polysilicon has lower capacitance but still high resistance
Use for transistor gates
Only occasionally for very short wires between gates



Resistance of Contacts and Vias

Contacts and vias have resistance associated with them

(2-20 Q)

Use multiple small contacts rather a single large contact

when the current turns at right angle use more contacts

N

%

FIG 4.33 Multiple vias for low-resistance connections
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A conducting line patterned
on top of an insulating
I n te rco n n ECtS layer creates a capacitance

w.r.t. the silicon substrate
— | |—

. av
i=C —

dt

DA

Substrate

Changing the capacitor voltage by an amount Av requires a time interval:

Atzg,Av
I

In other words there is a delay in the transmission of the electric signal



Fringe Capacitance
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Multilayer Capacitance
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Crosstalk

*  Delay effects A —||— B
* Noise Effects Cyng== adj L C,.,
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Modeling a single interconnect line

Figure 12.1:

Interconnect line — Y |f___ o
geometry i R = \ ,
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Simple RC ::C X T:RCZpEmSﬁZKl2
lumped model V. [t

L-model The time delay on an RC line is

proportional to the square of its
length



Delay and Rise Time of a simple RC
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Lumped vs. Distributed RC model

* Inreality the resistance and capacitance of the line is
distributed along its entire length

N segments
R/N R/N R/N R/N
R
W— € —WWV AVV— o000 —AM AA
C C/N C/N C/N C/N
A4 vV \Y4 A4




Improving the lumped-element RC
model

*  Placing the capacitance at the end overestimate its effect

A B
| : | |
Z
(a)
R.
A Rl B A line B
—\NVWN—e— —e— NN—¢—e
Cline —1~ p— p—
L Cline LG
(b) Simple model (c) Better model

=RC =—RC
T =7



Lumped vs. Distributed Delay

Vin(t) = u(t)

AV
gl t
Via(t) C:‘) G Vout(t) ‘{’51“.( ] Distributed

Lo |
R 0.5F—— Lumped
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ALY Lumped and distributed RC circuit response



Lumped approximations
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FIG 4.38 Lumped approximation to distributed

RC circuit

The L model Iis a very poor choice

The and T model are equivalent

It is common practice to model long wires with 3- or 4- T

segments



Delay through a distributed RC

Rd Rd Rd
—AMT— AT AN -

.
lCd Cd Cd




Distributed RC:
analytical approach (1)

1(x,t) |(x+AX, t)
Wi i Sy

i

V(x,t) ! Cd V(x+AXx,t)
x: x+Ax

/

Vix,t)—=V(x+Ax,t)=R,I(x,t)

< OV (x+Ax,t
I(x,t)—I(x+Ax,t)=C, <x8t X, 1)




Distributed RC:
analytical approach (2)

Capacitance and resistance of a
R,?777
Ca:Ra ) single distributed cell
. C
Capacitance and Cu=7 C =C -Ax
resistance per unit > d Tu
length Ru:§ R,=R Ax
(Vix,0)-V(x+Ax,0)=R,AxI(x,¢)
3 oV(x+Ax,t
I(x,t)—I(x+Ax,t)=C,Ax ( Py )
.
— + A
Vix,t)=V(x x’t)zRul(x,t)
J A x
I(x,t)—I(x+Ax,t) _c OV (x+Ax,t)
\ A x o Ot



Distributed RC:
analytical approach (3)

(

V(x,t)—V(x#—Ax):Ru](x’t)
J A x

I(x,t)—I(x+Ax) _c OV (x+Ax)
\ A x o ot

oy S X HR) = f(x)
f'(x)=lim .

If we let Ax — 0 ( and recall that):
h—0

.
oV (x,t) o oV
—_ N ——R
ol (x,t) oV (x,t) o
0 X =~ Ot I
\ o'V _ oV

Ox’ Yot




Distributed RC:
analytical approach (4)

PYE% (x,f) RC OV (x,1t) Diffusion Equation
> =— — Does not have a closed
0Xx [ ot form solution !!!

The input voltage is applied at x=0
Using an input of V(0,t) = Vpu(t) the solution at any point x is:

Vix,t)=V ,erfc xwffzf u(t)
With: erfc(n)=1—erf (n)= \/Zgl]jeazd(x %erfc(n):_?/%_nz
erf (0)=0

erf (n z%fe‘xd(x erf (oo)=

TT



Practical interconnect modeling

Medium Wire Node 4

x~[>o Long Wire Node 3

(@)

XD interconnect modeling with RC tree

The driver is modeled by a voltage source and its source resistance
R1

The medium wire is modeled by a single segment

The long wire is modeled by two T-segments



Elmore Delay approximation

* Forageneral RC network we compute the Elmore delay as:

1= Z C XRy
* where: :

— the node of interest is node i
— C, is the capacitance at node k

— Rik IS the sum of all resistances in common from the source to
node | and the source to node k



Example of EImore Delay Calculation

T3

C1R1+

C2 (R1+R2) +

C3 (R1+R2+R3) +
C4 R1

Tog =

C1R1+
C2R1+
C3R1+
C4 (R4 + R1)




Distributed RC:

approximated approach

Rd Rd Rd
—W—T—W—T

lCd $Cd lCd
Assume the line has N sections and use Elmore
approximation:

T= CR—I—C(R R)+C(R—|—R—|—£)—|—...(Nterms)
NN N N N N N N N
N
o CR(]-I—Z-I— _I_N_CRZZZCRN(N-I-I) RC

N’ N = N~ 2 N 2



Improving interconnect delay
through repeaters

Wire Length: /

o

Receiver

+>c AW
(@)  Driver \%
N Segments
I |
Segment
| |
/IN /IN E /IN E
(b) Driver V RepeaterVV Repeater Repeater V'  Receiver

LEERE] Wire with and without repeaters



Example of repeaters

r=20Q/umwithr=R/{
c=4x10" pF/umwithc=C//

{ = 2mm
. Wire Length: /
without repeater : {>c f
0? , Driver

Ip = ?rcﬁ‘ =11.2ns

/2 R“*‘{"’f\a‘er 012

T e
Driver r buf Receiver

with repeater :

fp=28ns+t, +28ns=35.0n5+1,

e

Receiver



Summary: important results

* Step Response of lumped and distributed RC networks

0—63% ﬁ RC 0.5RC

0—90% 2.3 RC 1.0 RC




Design Rules of Thumbs

w.r.t. propagation delay

—  RC effects should be considered only when the propagation delay of
the interconnect is comparable or larger than the propagation delay

of the driving gate
t RC delays hecome dominant for
it P interconnect wires longer than L
“* V0.38RC/I it

w.r.t. rise (fall) time

—  RC effects should be considered only when the rise (fall) time at the
line's input is smaller than the rise (fall) time of the line (=0.9 RC)

If this condition occurs the RC delay is such
e <0.9RC that the line cannot keep up with the rate
of change of the signal applied to it
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