
1 | P a g e

Using Magic VLSI to layout and simulate a Skywater 130nm CMOS inverter

1. Integrate skywater into magic

Since the skywater tech files are not installed in magic’s library, we need to create a symbolic link to use the tech files for
drawing layout.

sudo ln -s $PDK_ROOT/sky130A/libs.tech/magic/* $CAD_ROOT/magic/sys/

where:

$PDK_ROOT is /home/talarico/share/pdk
$CAD_ROOT is /home/talarico/opt/magic/lib

2. Create a working directory

mkdir -p /home/talarico/ihome/ngs406/layout/tutorial_sky130
cd /home/talarico/ihome/ngs406/layout/tutorial_sky130

3. Create the schematic and the symbol of the inverter using xschem

xschem inv.xschem

2 | P a g e

Once done drawing the schematic, the easiest way to generate the symbol is through the menu:
Symbol > Make symbol from schematic

The spice netlist inv.spice associated to the schematic inv.sch is:

**.subckt inv y a VP VN
*.opin y
*.ipin a
*.ipin VP
*.ipin VN
XM1 y a VN VN sky130_fd_pr__nfet_01v8 L=0.15 W=1 nf=1 ad='int((nf+1)/2) * W/nf * 0.29' as='int((nf+2)/2)
* W/nf * 0.29'
+ pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)' nrd='0.29 / W' nrs='0.29 /
W'
+ sa=0 sb=0 sd=0 mult=1 m=1
XM2 y a VP VP sky130_fd_pr__pfet_01v8 L=0.15 W=2 nf=1 ad='int((nf+1)/2) * W/nf * 0.29' as='int((nf+2)/2)
* W/nf * 0.29'
+ pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)' nrd='0.29 / W' nrs='0.29 /
W'
+ sa=0 sb=0 sd=0 mult=1 m=1
**.ends
.end

The next step is to open the symbol automatically generated:
xschem inv.sym

and edit its graphics. All graphic elements can be modified with the usual commands: Edit > Move Objects (shortcut
M), Edit > Flip selected objects (shortcut Alt+F), Edit > Rotate selected objects (shortcut
Alt+R). If needed, change the grid spacing and the snap value (View > Grid spacing, View > snap value). The
grid can be toggled on/off using the command Options > Draw grid (shortcut %). The properties associated to the
parts of the symbol (including fonts) can be edited by first selecting the part and then right clicking on it and selecting Edit
attributes or more simply using the command Properties > Edit (shortcut Q)

Finally, edit the global symbol properties by click anywhere outside the symbol and select Properties > Edit (shortcut
Q). This last step is very important, because it allows to specify the order of the ports of the associated subcircuit.

3 | P a g e

4. Simulate the inverter with ngspice

The most modular approach is to run the simulation through a testbench. It is possible to create the testbench directly as a
gspice netlist or through xschem.

xschem tb_inv.sch

With the attributes of symbol code.sym set as follows:(see Appendix):

4 | P a g e

The spice netlist associated to the testbench is tb_inv.spice:

**.subckt tb_inv
x1 a y vp vn inv
Vin a GND DC 0 pulse(0 1.8 5n 0.1n 0.1n 10n 20n)
VN vn GND 0
VP vp GND 1.8

**** begin user architecture code
.lib /home/talarico/share/pdk/sky130A/libs.tech/ngspice/sky130.lib.spice tt
.tran 10p 40n
.control
run
plot v(a) v(y)+2
.endc

**** end user architecture code

* expanding symbol: inv.sym # of pins=4
* sym_path: /home/talarico/ihome/ngs406/layout/tutorial_sky130/inv.sym
* sch_path: /home/talarico/ihome/ngs406/layout/tutorial_sky130/inv.sch
.subckt inv a y VP VN
*.opin y
*.ipin a
*.ipin VP
*.ipin VN
XM1 y a VN VN sky130_fd_pr__nfet_01v8 L=0.15 W=1 nf=1 ad='int((nf+1)/2) * W/nf * 0.29' as='int((nf+2)/2)
* W/nf * 0.29'
+ pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)' nrd='0.29 / W' nrs='0.29 /
W'
+ sa=0 sb=0 sd=0 mult=1 m=1
XM2 y a VP VP sky130_fd_pr__pfet_01v8 L=0.15 W=2 nf=1 ad='int((nf+1)/2) * W/nf * 0.29' as='int((nf+2)/2)
* W/nf * 0.29'
+ pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)' nrd='0.29 / W' nrs='0.29 /
W'
+ sa=0 sb=0 sd=0 mult=1 m=1
.ends

.GLOBAL GND
.end

Before running the simulation create a spice initialization file .spiceinit with the following content:

set ngbehavior=hsa
set ng_nomodcheck
set color0=white
set color1=black
set xbrushwidth=2

The simulation can be run from within xschem or through the CLI:

ngspice tb_inv.spice

5 | P a g e

5. Inverter Layout

Start magic as follows:

magic -rcfile sky130A.magicrc

The default grid is a bit too “fine” for the drawn channel length (150nm) of the sky 130 process, so change it as follows:

% grid 50nm 50nm

Make the cursor snap to the user grid just defined

% snap user

Draw the gate of the transistors (poly).

Draw drain and source (n-diffusions) of the nMOS transistor (ndiff)

Extend the poly hangover over the n-diffusion to fix the DRC errors

Create the drain and source terminals of the nMOS transistor. Place local interconnect (li) in the diffusions and contact (ndc)
the n-diffusions with the local interconnects.
Create the body-tap for the nMOS transistor. Place p-substrate diffusion (psd) and local interconnect (li) adjacent to the
source of the nMOS transistor, and then contact (psc) together the psd and the li.

Draw the pMOS transistor. The easiest approach is to copy the nMOS transistor (including the body tap) and have magic turn
it into a pMOS by surrounding the copy with n-well (nwell). The ndiff is turned into pdiff, the ndc is turned into pdc, the psd
is turned in nsd, and the psc is turned into nsc.

Create the ground and power rails (metal1).

For convenience, the exact commands to build the layout up to this point have been collected in a .tcl script
(buildInvLayout.tcl)

6 | P a g e

File: Build_InvLayout.tcl

set grid and snap
grid 50nm 50nm
snap user

set crosshair at origin and draw gate of transistors (poly)
box size 0 0
box position 0 0
box size 150nm 1000nm
paint poly

set crosshair at origin and draw drain and source diffusions (ndiff)
box size 0 0
box position 0 0
box position -450nm 0
box size 1050nm 1000nm
paint ndiff

extend the poly over the diffusions to fix DRC errors
box size 0 0
box position 0 0
box size 150nm -150nm
paint poly
box size 0 0
box position 0 0
box position 0 1000nm
box size 150nm 150nm
paint poly

create the drain and source terminals of the nMOS transistor.
place local interconnect (li) in the diffusions and then contact the
n-diffusions with the local interconnect (ndc).
drain side:
box size 0 0
box position 200nm 100nm
box size 400nm 800nm
paint li
box size 0 0
box position 300nm 150nm
box size 200nm 700nm
paint ndc
source side:
box size 0 0
box position 200nm 100nm
box size 400nm 800nm
select area
copy w 650nm
tap the body terminal of the nMOS transistor
place psubstrate diffusion (psd) and local interconnect
(li) and contact them together (psc)
box size 0 0
box position -850nm 0nm
box size 400nm 1000nm
paint psd
box size 0 0
box position -850nm 900nm
box size 400nm -800nm
paint li
box size 0 0
box position -750nm 850nm
box size 200nm -700nm
paint psc

draw the pMOS transistor
1. select and copy the nmos transistor

7 | P a g e

box size 0 0
box position -900nm 1150nm
box size 1550nm -1300nm
select area
copy north 3000nm
zoom to full view
view
2. double the width of the transistor
copy down 1000nm
3. Wrap n-well around --> magic turns the nMOS into a pMOS
box size 0 0
box position -1050nm 4200nm
box size 1850nm -2400nm
paint nwell

draw ground and power rails (metal 1)
box size 0 0
box position -1050nm -150nm
box size 1850nm -300nm
paint metal1
select area
copy up 4450nm

To execute the script run the command:

% source buildInvLayout.tcl

At this point the layout looks as follows:

The rest of the layout can be quickly completed interactively. In magic by default everything is a box. In BOX Tool mode
(indicated by a crosshair cursor) the mouse button clicks are used as follows:

8 | P a g e

Left mouse button (LMB) --> left bottom corner of box
Right mouse button (RMB) --> right top corner of box
Middle mouse button (MMB) --> paint the box with the same type of layer underneath the crosshair cursor

Connect the body of the nMOS transistor to the ground rail; place local interconnect (li) and then connect with mcon (a.k.a.
viali) the local interconnect and the metal1 rail. Note: the body and the source of the nMOS transistor are already
electrically connected (through local interconnect).

To verify the connectivity of various layers, place the crosshair on one of the layers of interest and then type s (macro for
select) repeatedly.

Connect the body of the pMOS transistor to the power rail; place local interconnect (li) and then connect with mcon (a.k.a.
viali) the local interconnect and the metal1 rail. Note: the body and the source of the pMOS transistor are already
electrically connected (through local interconnect).

Extend the nwell to fix the DRC errors.

9 | P a g e

Create the input of the inverter. Extend the polysilicon (poly), add local interconnect (li), and contact (pc) the poly and the
local interconnect:

Place a box on the area surrounding the nMOS transistor and the ground rail. Select the area through the command
% select area. Move the selected area up and go as close as possible to the pMOS network. As long as the layout is DRC
errors free, use repeatedly the command % move up 1.

Create the output of the inverter. Connect the drain of the pMOS transistor and the drain of nMOS transistor using local
interconnect (li).

10 | P a g e

Finally label and define the input, output, power rail and ground rail of the inverter as ports. Associating ports to the labels
facilitate doing hierarchical layouts. Put the crosshair on one terminal at the time and use the corresponding commands:

% label A w
% port make 1
% label Y e
% port make 2
% label VP w
% port make 3
% label VN w
% port make 4

Labels are yellow, and after making them ports become blue. The font is extremely small, so it may be useful to surround
them with a box and then zoom box using the macro ^Z.
Magic’s zoom commands are:
Zoom in – z (equivalent to zoom 0.5)
Zoom out – Z (equivalent to zoom 2)
Zoom Box – ^Z (equivalent to findbox zoom)

Finally, save the layout:

% save magic_inv.mag

11 | P a g e

6. Convert the layout into a spice netlist
First, extract the circuit netlist associated to the layout using the command:

% extract all

The command extract all creates the intermediate format netlist file magic_inv.ext.

Second, apply all the setting appropriate for running LVS.
% ext2spice lvs

The settings for running LVS include:

% ext2spice hierarchy on
% ext2spice scale off
% ext2spice format ngspice
% ext2spice cthresh infinite
% ext2spice rthresh infinite
% ext2spice global off
% ext2spice blackbox on
% ext2spice subcircuit top auto
% ext2spice renumber off

Finally, covert the .ext netlist into a .spice netlist

% ext2spice -d

The -d option distribute junction areas and perimeters calculation per node rather than per device.

The spice netlist generated is magic_inv.spice:

* NGSPICE file created from magic_inv.ext - technology: sky130A

.subckt magic_inv A Y VP VN
X0 Y A VN VN sky130_fd_pr__nfet_01v8 ad=4.5e+11p pd=2.9e+06u as=4.5e+11p ps=2.9e+06u
w=1e+06u l=150000u
X1 Y A VP VP sky130_fd_pr__pfet_01v8 ad=9e+11p pd=4.9e+06u as=9e+11p ps=4.9e+06u w=2e+06u
l=150000u
.ends

7. Double check the spice netlist generated through magic (run the same simulation you have run on the schematic
netlist)

Create a spice testbench to verify the behavior of the spice netlist generated. The testbench file tb_magic_inv.sp
looks as follows:

* tb_magic_inv.sp
.lib ~/share/pdk/sky130A/libs.tech/ngspice/sky130.lib.spice tt
.include magic_inv.spice

Xinv A Y VP VN magic_inv

Vdd VP VN 1.8
Vgnd VN 0 0
Vin A VN DC 0 pulse(0 1.8 5n 100p 100p 10n 20n)
* V1 V2 TD TR TF PW PER
.tran 10p 40n

12 | P a g e

.control
run
plot v(A) v(Y)+2
.endc

ngspice tb_magic_inv.sp

8. Run LVS using netgen

The netlist to compare are inv_xschem.cir:

** inv_xschem.cir

x1 a y vp vn inv

.subckt inv a y VP VN
XM1 y a VN VN sky130_fd_pr__nfet_01v8 L=0.15 W=1 nf=1 ad='int((nf+1)/2) * W/nf * 0.29'
as='int((nf+2)/2) * W/nf * 0.29'
+ pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)' nrd='0.29 /
W' nrs='0.29 / W'
+ sa=0 sb=0 sd=0 mult=1 m=1
XM2 y a VP VP sky130_fd_pr__pfet_01v8 L=0.15 W=2 nf=1 ad='int((nf+1)/2) * W/nf * 0.29'
as='int((nf+2)/2) * W/nf * 0.29'
+ pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)' nrd='0.29 /
W' nrs='0.29 / W'
+ sa=0 sb=0 sd=0 mult=1 m=1
.ends
.end

and inv_magic.cir:

** inv_magic.cir
.include magic_inv.spice
Xinv A Y VP VN magic_inv

.end

13 | P a g e

where magic_inv.spice is the spice netlist generated via magic:

* NGSPICE file created from magic_inv.ext - technology: sky130A

.subckt magic_inv A Y VP VN
X0 Y A VN VN sky130_fd_pr__nfet_01v8 ad=4.5e+11p pd=2.9e+06u as=4.5e+11p ps=2.9e+06u
w=1e+06u l=150000u
X1 Y A VP VP sky130_fd_pr__pfet_01v8 ad=9e+11p pd=4.9e+06u as=9e+11p ps=4.9e+06u w=2e+06u
l=150000u
.ends

Run netgen’s lvs interactively:

netgen
% lvs inv_magic.cir inv_xschem.cir

The lvs passes (circuits match uniquely) but there are property errors.

...
Final result:
Circuits match uniquely.
Property errors were found.

The following cells had property errors:
 inv_magic.cir
...

The detailed results of the lvs comparison are saved in the file: comp.out

The reason for the property errors is that in the xschem’s spice netlist inv_xschem.cir many of the MOS quantities
are given in parametric form rather than as absolute values.
The PDK provides a tcl script to solve this issue. The script is located at:
~/share/pdk/sky130A/libs.tech/netgen/sky130A_setup.tcl

To take advantage of this script, instead of running netgen and lvs interactively we run netgen in batch mode:

netgen -batch lvs inv_magic.cir inv_xschem.cir ~/share/pdk/sky130A/libs.tech/netgen/sky130A_setup.tcl

Since the command is quite lengthy, it is worth to put the command in a python script LVS.py.

#!/usr/bin/env python3
import os, sys

if len(sys.argv) != 3:
 print(' LVS: you must specify two netlist filenames to compare!')
 sys.exit(1)

os.system('netgen -batch lvs {} {} \
 ~/share/pdk/sky130A/libs.tech/netgen/sky130A_setup.tcl'.format(sys.argv[1],
sys.argv[2]))

sys.exit(0);

For convenience let’s also make the script executable, and move it in a directory that is already part of the $PATH:
chmod ugo+x LVS.py
mv LVS.py LVS

14 | P a g e

mv LVS.py ~/scripts/.

This way we can execute the lvs comparison as follows:

LVS inv_magic.cir inv_xschem.cir

...
Circuit 1 contains 2 devices, Circuit 2 contains 2 devices.
Circuit 1 contains 4 nets, Circuit 2 contains 4 nets.

Final result:
Circuits match uniquely.
...

9. Parasitic extraction
Open the layout of the inverter and extract the spice netlist with parasitic.

magic
% tech load sky130A
Select the point in the Layout window where you want to load the layout of the cell, and then run parasitic extraction:
% load magic_inv.mag
% grid 5
% snap user

% extract all
% ext2spice hierarchy on
% ext2spice scale off
% ext2spice cthresh 0
% ext2spice -d -o postlayout.spice -f ngspice

Change the name of the extracted netlist to be a bit more descriptive.
mv postlayout.spice magic_inv_post.sp

The content of the extracted spice netilist magic_inv_post.sp is:

* NGSPICE file created from magic_inv.ext - technology: sky130A

.subckt magic_inv A Y VP VN
X0 Y A VN VN sky130_fd_pr__nfet_01v8 ad=4.5e+11p pd=2.9e+06u as=4.5e+11p ps=2.9e+06u
+ w=1e+06u l=150000u
X1 Y A VP VP sky130_fd_pr__pfet_01v8 ad=9e+11p pd=4.9e+06u as=9e+11p ps=4.9e+06u
+ w=2e+06u l=150000u
C0 A VP 0.15fF
C1 VP Y 0.16fF
C2 A Y 0.06fF
.ends

NOTE: the setting ext2spice hierarchy off makes the parasitic extraction more conservative

% extract all
% ext2spice hierarchy off
% ext2spice scale off
% ext2spice cthresh 0
% ext2spice -d -o postlayout.spice -f ngspice

In this case the content of the extracted spice netlist is:

15 | P a g e

* NGSPICE file created from magic_inv.ext - technology: sky130A

.subckt magic_inv A Y VP VN
X0 Y A VN VN sky130_fd_pr__nfet_01v8 ad=4.5e+11p pd=2.9e+06u as=4.5e+11p ps=2.9e+06u
+ w=1e+06u l=150000u
X1 Y A VP VP sky130_fd_pr__pfet_01v8 ad=9e+11p pd=4.9e+06u as=9e+11p ps=4.9e+06u
+ w=2e+06u l=150000u
C0 A VP 0.15fF
C1 Y A 0.06fF
C2 Y VP 0.16fF
C3 Y VN 0.27fF
C4 A VN 0.18fF
C5 VP VN 0.80fF
.ends

10. Post-layout simulation

Create a test harness around the netlist with parasitic and name it tb_magic_inv_post.sp:

 * tb_magic_inv_post.sp
 .lib ~/share/pdk/sky130A/libs.tech/ngspice/sky130.lib.spice tt
 .include magic_inv_post.sp

Xinv A Y VP VN magic_inv
Vdd VP VN 1.8

 Vgnd VN 0 0
 Vin A VN DC 0 pulse(0 1.8 5n 100p 100p 10n 20n)
 * V1 V2 TD TR TF PW PER

.tran 10p 40n

.control
 run
 plot v(A) v(Y)+2
 .endc

And finally run the simulation:

ngspice tb_magic_inv_post.sp

16 | P a g e

11. Frequently used BOX tool commands

command macro description
 click on lmb set/move left lower corner coordinate (llx, lly) of the box
 click on rmb set/move right upper corner coordinate (urx, ury) of the box
 click on

mmb
paint box with material under the cursor

help Short description of all commands
help string Short description of all commands containing string
grid g toggle grid on/off
grid 0.05um 0.05um set the grid to 0.05um ´ 0.05um
snap user cause the box to snap to the selected grid
zoom amount zoom in/out by the factor amount
zoom 0.5 z zoom (out) by a factor of 1/2
zoom 2 Z zoom (in) by a factor of 2
 ^Z box zoom in
view v zoom window out so everything is visible
macro help shows all available macros
tech layer lists all available layers
paint layer Paint the defined box with the specified layer
select s Select region under the cursor. Toggles between connected regions

under the cursor
select area a select regions in area under box
select cell i select topmost cell in the window
select less cell ^I select topmost cell in the window
select clear , clear out selections
what Tells what’s in the selected area
erase layer erase layer under box
erase erase everything under box
delete d erase everything under selected area
 ^D delete materials inside box that match what’s under the cursor
undo u undo
redo U redo
findlabel label set box to the location of label
erase label erase the label(s) in the box
label string create label at box location
label B FreeSans 8 create label B with font FreeSans and size 8 (*)
label B w create label B with justification to the west of the box (*)
port make index make the label under the cursor box a port and assign to it the desired

numerical index
save save the current edit on disk

NOTE: save does not descend the hierarchy
save filename save the current edit on disk to filename.mag

NOTE: save does not descend the hierarchy
quit exit magic
tech load techname load specified techname (e.g., sky130A)
tech layers list all the layers in the technology
load filename.mag load the cell filename.mag in the magic window
 Arrow Keys “panning” the layout view
box size return box size (in lambda units)
box position return the box llx, lly coordinates (in lambda units)
box b shows box dimensions in all available units
drc find [nth] locate next or (n-th) error in the layout
drc why ? print out reasons for drc error under box

17 | P a g e

move m move selected area to the crosshair cursor position
move direction move selected area of 1 unit of distance in the defined direction.

Distances are normally interpreted as lambda values. However, this
depends on the last use of the snap command; snap internal changes
the interpretation of units to the internal grid, while snap
user changes the interpretation of units to the user grid. The units of
distance can be specified explicitly by appending to the distance the
value i or l or um (with no intervening spaces). The material left
behind by the move operation is erased.

move direction distance move selected area of distance in the defined direction.
Distances are normally interpreted as lambda values. However, this
depends on the last use of the snap command; snap internal changes
the interpretation of units to the internal grid, while snap
user changes the interpretation of units to the user grid. The units of
distance can be specified explicitly by appending to the distance the
value i or l or um (with no intervening spaces). The material left
behind by the move operation is erased.

stretch direction the stretch command moves the current selection from its current
position according to the command arguments and fills in behind with
material such that electrical connections are maintained across the
area in between the original and final positions. (**)

stretch direction distance
copy c copy selected area to the crosshair cursor position
copy direction copy selection at unit distance and specified direction from coordinate

(llx, lly)
copy direction distance copy selection at distance and specified direction from coordinate (llx,

lly)
sideways f flip selection and box sideways
upsidedown F flip selection and box upside down
rotate r rotate the selection and box clockwise of 90 degrees
rotate [+/-] degrees rotate the selection and box by [+/-] degrees (the value of

degrees must be 90, 180 or 270)
clockwise r it is the same as rotate
clockwise degrees rotate the selection and box clockwise by degrees (the value of degrees

must be 90, 180 or 270)

(*) The easiest way to set labels is to use the menu Edit > Text in the layout window
For executing a macro, the focus must be on the “Layout window”
For executing a command, the focus must be on the “tcl-tk console”

(**) Example:

% move down 2

18 | P a g e

% stretch down 2

% copy north 8

Magic consists of four tools. The space bar in the Layout Window allows to switch among the tools (BOX Tool, WIRING tool,
NETLIST tool, and PICK tool).

To draw a layout without continuously incurring in DRC errors it is important to have a reasonable knowledge of the design
rules. The design rules can be obtained directly from within magic using the tech command.

command macro description
tech drc width layer Return the minimum allowed width for the indicated layer
tech drc spacing layer1 [layer2] Return the minimum allowed spacing between layer1 and layer2,

if layer2 is specified, or between layer1 and itself, if not.

Example

% tech drc width poly
15

The value returned is in internal units.

For the sky130A the units are mapped as follows:
microns: 0.010 x 0.010
lambda: 1.00 x 1.00

The command tech lambda shows the internal units per lambda unit:

% tech lambda

1 1

1 lambda unit corresponds to 1 internal unit

19 | P a g e

Since 1 internal unit corresponds to 1 lambda unit and 1 lambda unit corresponds to 0.01um (=10nm), the min width of the
poly is 150nm

% tech drc width nwell
84

% tech drc spacing li li
17

% tech drc spacing ndiff nwell
34

If needed, is possible to scale the ratio between internal units and lambda units using the scalegrid command

% scalegrid a b

After the command is executed a lambda units corresponds to b internal units.

scalegrid 1 2

means 2 internal units per lambda.

Grid scaling is interpreted relative to the current scale, so

scalegrid 1 2
scalegrid 1 2

results in 4 internal units per lambda.
The grid scaling can be queried using the tech lambda command.

	

20 | P a g e

12. Appendix

Whenever we put together an xschem’s testbench for a circuit using the sky130 process, we need to include the libraries
where the device models are located. Rather than including a code.sym component and editing it by hand, it’s more
convenient to build a specific symbol (e.g., TT_models). The fastest way to build a new symbol is to copy an existing symbol
that does something similar and then modify it with a text editor rather than through xschem.

Here is the content of the symbol TT_models.sym:

v {xschem version=3.1.0 file_version=1.2 }
G {}
K {type=netlist_commands
template="name=TT_models only_toplevel=false"
format="tcleval(
\\.lib $::SKYWATER_MODELS/sky130.lib.spice tt\\
)"
}

V {}
S {}
E {}
L 4 20 30 60 30 {}
L 4 20 40 40 40 {}
L 4 20 50 60 50 {}
L 4 20 60 50 60 {}
L 4 20 70 50 70 {}
L 4 20 80 90 80 {}
L 4 20 90 40 90 {}
L 4 20 20 70 20 {}
L 4 20 10 40 10 {}
L 4 100 10 110 10 {}
L 4 110 10 110 110 {}
L 4 20 110 110 110 {}
L 4 20 100 20 110 {}
L 4 100 0 100 100 {}
L 4 10 100 100 100 {}
L 4 10 0 10 100 {}
L 4 10 0 100 0 {}
T {@name} 5 -25 0 0 0.3 0.3 {}

Other common process corners for which we may want to run simulations include ff,fs,sf and ss.

NOTE: xschem already provides an ad hoc symbol for this purpose: it is corner.sym. There is neither the need to use the
symbol code.sym nor the need to create the symbol TT_models.

21 | P a g e

Example

The testbench test_inv.sch shows how to take advantage of corner.sym:

With the attributes of corner.sym set as follows:

The corresponding spice netlist test_inv.spice is:

**.subckt test_inv
x1 a y vp vn inv
Vin a GND DC 0 pulse(0 1.8 5n 0.1n 0.1n 10n 20n)
VN vn GND 0
VP vp GND 1.8
**** begin user architecture code

.tran 10p 40n
.control
run
plot v(a) v(y)+2
.endc

.param mc_mm_switch=0
.param mc_pr_switch=0

22 | P a g e

.include /home/talarico/share/pdk/sky130A/libs.tech/ngspice/corners/tt.spice

.include /home/talarico/share/pdk/sky130A/libs.tech/ngspice/r+c/res_typical__cap_typical.spice

.include /home/talarico/share/pdk/sky130A/libs.tech/ngspice/r+c/res_typical__cap_typical__lin.spice

.include /home/talarico/share/pdk/sky130A/libs.tech/ngspice/corners/tt/specialized_cells.spice

**** end user architecture code
**.ends
* expanding symbol: inv.sym # of pins=4
* sym_path: /home/talarico/ihome/ngs406/layout/tutorial_sky130/inv.sym
* sch_path: /home/talarico/ihome/ngs406/layout/tutorial_sky130/inv.sch
.subckt inv a y VP VN
*.opin y
*.ipin a
*.ipin VP
*.ipin VN
XM1 y a VN VN sky130_fd_pr__nfet_01v8 L=0.15 W=1 nf=1 ad='int((nf+1)/2) * W/nf * 0.29' as='int((nf+2)/2) * W/nf * 0.29'
+ pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)' nrd='0.29 / W' nrs='0.29 / W'
+ sa=0 sb=0 sd=0 mult=1 m=1
XM2 y a VP VP sky130_fd_pr__pfet_01v8 L=0.15 W=2 nf=1 ad='int((nf+1)/2) * W/nf * 0.29' as='int((nf+2)/2) * W/nf * 0.29'
+ pd='2*int((nf+1)/2) * (W/nf + 0.29)' ps='2*int((nf+2)/2) * (W/nf + 0.29)' nrd='0.29 / W' nrs='0.29 / W'
+ sa=0 sb=0 sd=0 mult=1 m=1
.ends

.GLOBAL GND

.end

Invoke the simulation from CLI:

ngspice test_inv.spice

23 | P a g e

References:	

[1] Magic	VLSI	user’s	guide	(Tim	Edwards)	
http://opencircuitdesign.com/magic/userguide.html	

[2] CMOS	Inverter	VTC	and	Transient	Simulation	Tutorial	Using	Xschem	and	Ngspice	(Bradley	A.	Minch,	@bminch)	
https://www.youtube.com/watch?v=bm3l21ExLOY	

[3] Creating	a	Hierarchical	Schematic	in	Xschem	(Bradley	A.	Minch)	
https://www.youtube.com/watch?v=BpPP2hE_eK8	

[4] Creating	a	Hierarchical	Layout	in	Magic	Using	the	SKY130	PDK	(Bradley	A.	Minch)	
https://www.youtube.com/watch?v=RPppaGdjbj0	

[5] Layout	Versus	Schematic	Tutorial	Using	Netgen	–	Part	1	(Bradley	A.	Minch)	
https://www.youtube.com/watch?v=NCaNF4EunYU&t=134s	

[6] Layout	Versus	Schematic	Tutorial	Using	Netgen	–	Part	2	(Bradley	A.	Minch)	
https://www.youtube.com/watch?v=_xsZbaTBEEA&t=41s	

