EXAM 2 FORMULAS

Theorem. For any random variable X and any constants a and b:

1. E(aX + b) = aE(X) + b and 2. $Var(aX + b) = a^2 Var(X)$.

Definition. A random sample of size n is a set of independent identically distributed (iid) random variables X_1, X_2, \ldots, X_n . Some sample statistics:

- 1. The sample total $T = \sum_{i=1}^{n} X_i$ 2. The sample mean: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

Theorem. For any random sample from a population with mean μ and variance σ^2 :

- 1. $E(T) = n\mu$ and $Var(T) = n\sigma^2$
- 2. $E(\overline{X}) = \mu$ and $Var(\overline{X}) = \frac{\sigma^2}{n}$

Definition. A sample statistic $\hat{\Theta}$ is an **unbiased estimator** of population parameter θ if $E(\hat{\Theta}) = \theta$. The **bias** of $\hat{\Theta}$ as an estimator for θ is $bias(\hat{\Theta}) = E(\hat{\Theta}) - \theta$.

Theorem (Central Limit Theorem). If \overline{X} is a the mean of a large random sample from any population, then \overline{X} is approximately normally distributed (with mean and variance given in the theorem above).

Definition. Let X and Y be jointly distributed discrete RVs with joint PMF p(x, y) = P(X = x, Y = y).

- 1. The marginal PMF of X is $p_X(x) = P(X = x) = \sum_y p(x, y)$.
- 2. The conditional PMF of Y given X = x is $p_{Y|X=x}(y) = P(Y = y|X = x) = \frac{p(x,y)}{n_Y(x)}$
- 3. The regression function of Y on X is $\mu_{Y|X=x} = \sum_{y} y p_{Y|X=x}(y)$.
- 4. X and Y are independent if $p(x, y) = p_X(x)p_Y(y)$.
- 5. The covariance of X and Y is $\operatorname{Cov}(X, Y) = \sigma_{X,Y} = E\left[(X \mu_X)(Y \mu_Y)\right] = E(XY) E(X)E(Y).$ 6. Pearson's correlation coefficient is $\rho = \frac{\sigma_{X,Y}}{\sigma_X \sigma_Y}.$

Definition. The total number of successes in *n* independent, identically distributed (iid) Bernoulli trials with parameter p is a random variable with a **binomial** distribution. The PMF of a random variable X having a binomial distribution with parameters n and p is $p(x) = \binom{n}{x} p^x (1-p)^{n-x}$ for x = 0, 1, ..., n.

Proposition. The mean and variance of a binomial distribution are $\mu = np$ and $\sigma^2 = np(1-p)$.

R Implementation. If $X \sim \operatorname{binom}(n, p)$, then the CDF is pbinom(x, n, p).

Definition. If independent, identically distributed Bernoulli trials with parameter p are repeated until the first success, then the total number of trials (counting the success) has a **geometric** distribution. The PMF is $p(x) = (1-p)^{x-1}p$ for x = 1, 2, 3, ... and the CDF is $F(x) = 1 - (1-p)^x$ for x = 1, 2, 3, ...

Proposition. The mean and variance of a geometric distribution are $\mu = \frac{1}{p}$ and $\sigma^2 = \frac{1-p}{p^2}$.

Definition. A **Poisson** random variable with parameter $\lambda > 0$ has the PMF $p(x) = \frac{\lambda^x e^{-\lambda}}{x!}$ for x = $0, 1, 2, \ldots$

Proposition. The mean and variance of a Poisson distribution are $\mu = \lambda$ and $\sigma^2 = \lambda$.

R Implementation. If $X \sim \text{pois}(\lambda)$, then the CDF is $\text{ppois}(\mathbf{x}, \lambda)$.

Definition. A random variable X with a **uniform continuous** distribution on the interval $[\alpha, \beta]$ has the PDF: $f(x) = \frac{1}{\beta - \alpha}$ if $\alpha < x < \beta$.

Proposition. The mean and variance of a uniform continuous distribution on $[\alpha, \beta]$ are $\mu = \frac{\alpha+\beta}{2}$ and $\sigma^2 = \frac{(\beta - \alpha)^2}{12}.$

Date: March 21, 2023.

Definition. A random variable with an **exponential** distribution with parameter $\lambda > 0$ has PDF $f(x) = \lambda e^{-\lambda x}$ if x > 0 and CDF $F(x) = 1 - e^{-\lambda x}$ if x > 0.

Proposition. An exponential distribution with parameter λ has mean $\mu = \frac{1}{\lambda}$ and variance $\sigma^2 = \frac{1}{\lambda^2}$.

R Implementation. If $X \sim \exp(\lambda)$, then the CDF is pexp(x, λ).

Definition. A random variable with a **normal** distribution with parameters μ and $\sigma^2 > 0$ has the PDF: $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ for all $x \in \mathbb{R}$

Proposition. A normal distribution with parameters μ and σ^2 has mean $\mu = \mu$ and variance $\sigma^2 = \sigma^2$.

R Implementation. If $X \sim N(\mu, \sigma^2)$, then the CDF is pnorm(x, μ , σ) (note that R wants the standard deviation, not the variance). The parameters μ and σ are optional; if ommitted, they default to $\mu = 0$ and $\sigma = 1$ (a standard normal distribution).