Note. A standard deck of cards has 52 cards in 4 suits: spades \spadesuit , hearts \heartsuit , clubs \clubsuit , and diamonds \diamondsuit . Spades and clubs are black suits, while hearts and diamonds are red suits. Within each suit there are 13 ranks: 2, 3, 4, ..., 10, Jack, Queen, King, and Ace. Together, a rank and a suit uniquely identify the card (cards are 2-dimensional).

- 1. Suppose 10 cards are dealt from a well-shuffled deck.
- a) Find the probabilty that exactly 5 are hearts.

$$\frac{\binom{13}{5}\binom{39}{5}}{\binom{52}{10}} = dhyper(5, 13, 39, 10) \approx 0.046839$$

b) Find the probability that 5 or more are hearts.

- 2. Suppose now that you shuffle the deck and look a the top card 10 times.
- a) Find the probabilty that exactly 5 of the cards you see are hearts.

b) Find the probability that 5 or more are hearts.

- 3. For this problem, suppose you have created a mega deck by shuffling together 10 regular decks (for a total of 520 cards).
- a) Find the probability that exactly 5 are hearts if you deal 10 cards from the mega deck.

b) Find the probability that exactly 5 cards are hearts when you shuffle and look at the top card 10 times.

c) Repeat both parts a and b for a super-mega deck of 5200 cards.

d) Any observations?

When taking a small sample from a large pop, with and nithout replacement are about the same. $\% \pm 0.05$ nive of thunb,

- 4. Return to a regular deck of 52 cards. The goal this time is to find the PMF of a new distribution in which you count the number of cards you must look at to find a heart. For this problem, take the inefficient approach of shuffling and looking at just the top card. Return the card to the deck an repeat until you see a heart. Let X be the number of times you do this (including the time when you see the heart and stop).
- a) What are the possible values for X?

b) Find the PMF for X.

$$P(X=x)$$
 | $\frac{2}{4}$ | $\frac{3}{4}$ | $\frac{4}{4}$ | $\frac{3}{4}$ | $\frac{3}{$

- 5. This is the more reasonable version of the previous problem: deal cards from a well-shuffled deck until you deal a heart. Let Y be the number of cards you deal (including the heart).
- a) What are the possible values for Y?

b) Find the PMF for Y.

$$P(Y=y) = \frac{39!}{(40y)!} \left[\frac{(62-y)!}{52!} \right] 13$$

6. Suppose you're studying abroad in Florence and, as you leave for school one morning, you find a coin in the pocket of your jacket. You don't look at the coin, but you can tell it's either a $\in 1$ or a $\in 2$ coin; you figure both are equally likely. On your way out, a friend pays you back for the coffee you bought the other day with a $\in 1$ coin that you drop in the same pocket. Then you stop for coffee and randomly select a coin from the pocket: it's a $\in 1$ coin. What is the probability that the remaining coin is $\in 2?$

EVENTS: A: original coin is
$$\in$$
]; B: select \in].

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A)+P(B|A')P(A')} = \frac{1(\frac{1}{2})}{1(\frac{1}{2})+\frac{1}{2}(\frac{1}{2})} = \frac{\frac{1}{2}}{\frac{3}{4}} = \frac{2}{3}.$$

So $P(A'|B) = \frac{1}{4}$