FUNCTIONS OF RANDOM VARIABLES

Definition. Let $g(x)$ be a continuous function and let X be a continuous random variable with PDF $f(x)$. Then $E[g(X)]=\int_{-\infty}^{-\infty} g(x) f(x) d x$

1. Let X be a continuous random variable with mean 50 and standard deviation 4. Calculate $E\left(\frac{X-50}{4}\right)$ and $\operatorname{Var}\left(\frac{X-50}{4}\right)$. Hint: the given information includes $50=E(X)=\int_{-\infty}^{\infty} x f(x) d x$ and $16=\operatorname{Var}(X)=$ $E\left(X^{2}\right)-50^{2}$.

Challenge. Fill in the blanks in the following theorem with expressions involving a, b, μ, and σ.
Theorem 1. Let X be a random variable with mean μ and variance σ^{2} and let a and b be constants.
i) $E(a X+b)=$
ii) $\operatorname{Var}(a X+b)=$ \square

Theorem 2. Let $X_{1}, X_{2}, \ldots, X_{n}$ be any random variables. Then $E\left(X_{1}+X_{1}+\cdots+X_{n}\right)=E\left(X_{1}\right)+$ $E\left(X_{2}\right)+\cdots+E\left(X_{n}\right)$.

Theorem 3. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables. Then $\operatorname{Var}\left(X_{1}+X_{2}+\cdots+X_{n}\right)=$ $\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)$.

Definition. We say that the random variables $X_{1}, X_{2}, \ldots, X_{n}$ are a random sample if they are independent and identically distributed. The sample size is n. Their common distribution is called the population distribution. Some sample statistics:

1. The sample total: $T=\sum_{i=1}^{n} X_{i}=X_{1}+X_{1}+\cdots+X_{n}$
2. The sample mean: $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}=\frac{1}{n}\left(X_{1}+X_{1}+\cdots+X_{n}\right)$
3. The sample variance: $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$

Our goal is to understand the distributions of these sample statistics.
2. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a population with mean μ and variance σ^{2}. Calculate the expected value and variance of the sample mean (that's $E(\bar{X})$ and $\operatorname{Var}(\bar{X}))$.

Theorem 4 (Central Limit Theorem). If $X_{1}, X_{2}, \ldots, X_{n}$ comprise a random sample from a population with mean μ and variance σ^{2}, then the limiting distribution (as $n \rightarrow \infty$) of $\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}}$ is a standard normal distribution.

The CLT tells us that for large sample sizes \bar{X} is approximately normal with mean μ and variance $\frac{\sigma^{2}}{n}$. By noticing that $T=n \bar{X}$, we can also say that T approximately normal with mean $n \mu$ and variance $n \sigma^{2}$ (for large samples). Use these normal approximations to answer the following problems.
3. A certain kind of bicycle spoke has a mean mass of $\mu=4.2 \mathrm{~g}$ with a standard deviation of $\sigma=0.4 \mathrm{~g}$. I intend to build a wheel with $n=32$ spokes.
a) What is the probability that the total mass of the spokes in my wheel is under 136 g ?
b) What is the probability that the total mass of the spokes in my wheel exceeds 130 g ?
c) Suppose I build two wheels with these spokes. What is the probability that the total mass of the 64 spokes will be under 272 g ?
4. Suppose you roll a fair 6 -sided die 50 times. Estimate the probability that the mean of all the rolls is at least 4. Hint: think of this as a random sample of size 50 from an underlying population with the mean and variance of a single roll of the die (you may need to calculate this mean and variance).
5. If the underlying population is normally distributed, then $Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}$ is a standard normal random variable (not just approximately standard normal), so our calculations are the same, but our answers are exact and all sample sizes work. Suppose we have a normally distributed population with mean 100 and standard deviation 10. Let \bar{X} be the mean of a random sample of size n. Calculate $P(98<\bar{X}<102)$ for each sample size.
a) $n=1$
b) $n=25$
c) $n=100$
d) $n=10000$
6. Binomial distributions show up when we count the number of successes in a random sample. For example, suppose you roll a fair 6 -sided die 64 times. Let T be the number of sixes you roll.
a) What is the (exact) distribution of T ?
b) Calculate $P(T \geq 12)$.
c) The CLT says that T is approximately normal with mean $64(1 / 6)$ and variance $64(1 / 6)(5 / 6)$. Use this normal approximation to estimate $P(T \geq 12)$. How does this answer compare with the exact answer you found in part b?

