
ESTIMATION

We are interested in using the values of a random sample X1, X2, . . . , Xn to estimate the values of
population parameters (usually µ or σ2, but also including other parameters). At this point, we have
mostly talked about using the sample mean X as an estimate for the population µ (this includes using a
sample proportion to estimate a population proportion). For example, if you wanted to know the mean
age of the trees in a forest, you could select 100 random trees, determine their ages, then use the mean
age of trees in your sample as an estimate for the mean age of trees in the whole forest.

Definition. We call the sample statistic Θ̂ (a random variable determined by the values of a random

sample of size n) an estimator of the population parameter θ if the value of Θ̂ will be used as an estimate
of θ.

(1) If E(Θ̂) = θ, then we call Θ̂ an unbiased estimator.

(2) If for any c > 0, lim
n→∞

P (|Θ̂− θ| < c) = 1, then we call θ̂ a consistent estimator.

Example. Suppose we know that population is uniformly continuously distributed on the interval [0, β],
but we don’t know β. Let X be the mean of a random sample of size n. We know that E(X) = 0+β

2
= β

2
.

It then follows that E(2X) = β. Thus B̂ = 2X is an unbiased estimator of the population parameter β.
This unbiased estimator is based on the sample mean X.

1. Keep working with the population in the example. Let X1, X2, . . . , X10 be a random sample and let X̂
be the maximum of the sample. Our goal is to find an unbiased estimator for β based on X̂. The CDF of

the population is F (x) =


0 if x ≤ 0
x
β

if 0 < x < β

1 if β ≤ x

a) Find the CDF of X̂. Hint: X̂ ≤ x if and only if X1 ≤ x and X2 ≤ x and . . . and X10 ≤ x.

b) Differentiate the CDF to find a PDF for X̂

c) Use the PDF to calculate E(X̂)

d) Find a number c such that E(cX̂) = β

Your unbiased estimator for β is cX̂.
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I collected a random sample from a population uniformly continuously distributed on [0, β] and got the
following values:

0.8023426 1.1194331 1.5173202 1.5353951 2.1296237
2.5989737 3.4224997 3.7957449 4.8618741 5.0795233

This means 2x = 5.372546 and 1.1x̂ = 5.587476 (I’m using lowercase letters here because I have actual
values for the sample statistics and I’m no longer thinking of them as random variables). We now have
the values of two unbiased estimators for β. Which should we actually use? Is one of the estimators
more reliable than the other? There’s a general principle that applies: when given the choice between
unbiased estimators, you should always choose the estimator with smaller variance.

2. Our goal now is to determine which of the estimators has a smaller variance.

a) Use the theorems of the last worksheet to calculate Var(2X) (it will help to know that the population

variance is σ2 = β2

12
).

b) You’ll have to calculate the variance of the other estimator by hand. You already know the expected

value of X̂, so it makes sense to use the formula Var(X̂) = E
(
X̂2
)
−
[
E(X̂)

]2
.

Which estimator has a smaller variance?



What we have been doing so far is called point estimation: we are using samples to make guesses
about the values of population parameters. However, we know that our guesses are correct with probability
0 (in the case of continuous distributions). It makes sense to ask if we could come up with a range of
values that is likely to contain the population parameter.1 This is called interval estimation.

3. Let Z be a standard normal random variable. Find a number z such that P (−z < Z < z) = 0.95. The
R command qnorm(p) returns the 100pth percentile of the standard normal distribution; you may want to
use this commmand to solve this problem.

4. Let X be the mean of a random sample of size 100 from a population with mean µ and standard
deviation σ = 2 (note that this is the population standard deviation, not the standard deviation of X).

Substitute Z = X−µ
σ/
√
n

into the expression in problem 3, then isolate µ to fill in the blanks:

P (X − < µ < X + ) = 0.95

5. Samples are taken and you find x = 7.7672. Substitute this value in for X in your solution to the
previous problem to find the 95% confidence interval for the population mean µ.

1We’ll have to be careful with the phrase “likely to contain the population parameter.” Problems 6 and 7 deal with this.



6. What’s wrong with the expression P (7.3752 < µ < 8.1592) ≈ 0.95?

7. Your 95% confidence interval is actually just the interval (7.3752, 8.1592). What do these numbers
mean? Try to give a non-technical explanation of how to interpret this confidence interval.

Definition. If X is the mean of a random sample of size n (with n large) from a population with mean

µ and standard deviation σ, then the 100(1− α)% confidence interval for µ is x± zα/2
σ√
n

. Here zα/2 is

the z-critical value: P
(
Z > zα/2

)
= α/2 and can be found using the R command qnorm(1− α/2).

8. A random sample of 139 male house sparrows yields a sample mean blood plasma level (in pg/ml) of
209.46 and with a standard error of 16.62. Note that this is the standard error, not standard deviation:
standard error is an estimate for the standard deviation of X, usually s√

n
. Use the standard errror in place

of σ√
n

in your confidence interval. Calculate 95% and 99% confidence intervals for the true mean plasma

level of male house sparrows.


